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ABSTRACT
Upcoming radio interferometers are aiming to image the sky at new levels of resolu-
tion and sensitivity, with wide-band image cubes reaching close to the Petabyte scale
for SKA. Modern proximal optimization algorithms have shown a potential to signif-
icantly outperform CLEAN thanks to their ability to inject complex image models
to regularize the inverse problem for image formation from visibility data. They were
also shown to be scalable to large data volumes thanks to a splitting functionality en-
abling the decomposition of data into blocks, for parallel processing of block-specific
data-fidelity terms of the objective function. In this work, the splitting functionality is
further exploited to decompose the image cube into spatio-spectral facets, and enable
parallel processing of facet-specific regularization terms in the objective. The result-
ing “Faceted HyperSARA” algorithm is implemented in MATLAB (code available on
GitHub). Simulation results on synthetic image cubes confirm that faceting can pro-
vide a major increase in scalability at no cost in imaging quality. A proof-of-concept
reconstruction of a 15 GB image of Cyg A from 7.4 GB of VLA data, utilizing 496
CPU cores on a HPC system for 68 hours, confirms both scalability and a quantum
jump in imaging quality from CLEAN. Assuming slow spectral slope of Cyg A, we
also demonstrate that Faceted HyperSARA can be combined with a dimensionality
reduction technique, enabling utilizing only 31 CPU cores for 142 hours to form the
Cyg A image from the same data, while preserving reconstruction quality. Cyg A
reconstructed cubes are available online.
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1 INTRODUCTION

Modern radio interferometers, such as the Karl G. Jansky
Very Large Array (VLA) (Perley et al. 2011), the LOw Fre-
quency ARray (LOFAR) (Van Haarlem et al. 2013) and the
MeerKAT radio telescope (Jonas et al. 2018) generate ex-
tremely large volumes of data, with the aim of producing
images of the radio sky at unprecedented resolution and
dynamic range over thousands of spectral channels. The
upcoming Square Kilometer Array (SKA) (Dewdney et al.

? The first five authors contributed equally to this work.
† E-mail: y.wiaux@hw.ac.uk

2013) will form wide-band images about 0.56 Petabyte in
size (assuming double precision) from even larger visibil-
ity data volumes (Scaife 2020). SKA is expected to bring
answers to fundamental questions in astronomy1, such as
improving our understanding of cosmology and dark en-
ergy (Rawlings et al. 2004), investigating the origin and evo-
lution of cosmic magnetism (Gaensler et al. 2004) and prob-
ing the early universe where the first stars were formed (Car-
illi et al. 2004). To achieve the expected scientific goals, it
is of paramount importance to design efficient imaging algo-
rithms which meet the capabilities of such powerful instru-

1 https://www.skatelescope.org/science/
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ments. On the one hand, appropriate algorithms need to
inject complex prior image models to regularize the inverse
problem for image formation from visibility data, which only
provide incomplete Fourier sampling. On the other hand,
these algorithms need to be highly parallelizable in order to
scale with the sheer amount of data and the large size of the
wide-band image cubes to be recovered.

A plethora of radio-interferometric (RI) imaging ap-
proaches have been proposed in the literature, which can be
classified into three main categories. A first class of meth-
ods is the celebrated CLEAN family (e.g. Högbom 1974;
Schwab & Cotton 1983; Bhatnagar & Cornwell 2004; Corn-
well 2008; Rau & Cornwell 2011; Offringa & Smirnov 2017).
In particular, Rau & Cornwell (2011) proposed the multi-
scale multi-frequency deconvolution algorithm (MS-MFS),
leveraging Taylor series and multi-scale CLEAN to promote
spectral smoothness of the wide-band image cube. More re-
cently, Offringa & Smirnov (2017) have proposed the Joined
Channel CLEAN algorithm (JC-CLEAN), where multi-scale
CLEAN components are identified from the integrated resid-
ual image (i.e. the sum of the residual images over all
the channels). Albeit simple and computationally efficient,
CLEAN-based algorithms provide a limited imaging quality
in high resolution and high sensitivity acquisition regimes.
This shortcoming partly results from their greedy nature
and their lack of flexibility in injecting complex prior infor-
mation to regularize the inverse imaging problem. Moreover,
these algorithms often require careful tuning of the associ-
ated parameters.

The second class of methods relies on Bayesian inference
techniques (e.g. Sutton & Wandelt 2006; Sutter et al. 2014;
Junklewitz et al. 2015, 2016; Arras et al. 2019). For instance,
Sutter et al. (2014) proposed a monochromatic Bayesian
method based on Markov chain Monte Carlo (MCMC) sam-
pling, considering a Gaussian image prior. Since MCMC
sampling methods are computationally very expensive, an
efficient variant was proposed in Junklewitz et al. (2016);
Arras et al. (2019) to perform approximate Bayesian infer-
ence, formulated in the framework of information theory.
Importantly, Bayesian methods naturally enable the quan-
tification of uncertainty about the image estimate. However,
this type of approaches cannot currently scale to the data
regime expected from modern telescopes.

The third class of approaches leverages optimization
methods allowing sophisticated prior information to be con-
sidered, such as sparsity in an appropriate transform do-
main, smoothness, etc, (e.g. Wiaux et al. 2009; Li, F. et al.
2011; Dabbech et al. 2012; Carrillo et al. 2012; Wenger &
Magnor 2014; Garsden et al. 2015; Dabbech et al. 2015; Gi-
rard et al. 2015; Ferrari et al. 2015; Abdulaziz et al. 2016;
Jiang et al. 2017; Abdulaziz et al. 2019b). From the per-
spective of optimization theory, the inverse imaging prob-
lem is approached by defining an objective function, con-
sisting in a sum of a data-fidelity term and a regularization
term promoting a prior image model to compensate for the
incompleteness of the visibility data. The sought image is
estimated as a minimizer of this objective function, and is
computed through iterative algorithms, which benefit from
well-established convergence guarantees. For instance, Fer-
rari et al. (2015) promote spatial sparsity in a redundant
wavelet domain and spectral sparsity in a Discrete Cosine
Transform. Wenger & Magnor (2014) promote spectra com-

posed of a smooth contribution affected by local sparse de-
viations. In the last decade, Wiaux and collaborators pro-
posed advanced image models: the average sparsity prior
in monochromatic imaging (SARA) (Carrillo et al. 2012,
2013, 2014; Onose et al. 2016a,b, 2017; Pratley et al. 2017;
Dabbech et al. 2018), the low-rankness and joint average
sparsity priors for wide-band imaging (HyperSARA) (Ab-
dulaziz et al. 2016, 2017, 2019b), and the polarization con-
straint for polarized imaging (Polarized SARA) (Birdi et al.
2018)2. These models have been reported to result in signifi-
cant improvements in the reconstruction quality in compar-
ison with state-of-the-art clean-based imaging methods, at
the expense of an increased computation cost.

Note that, from a Bayesian perspective, the objective
function can be seen as the negative logarithm of a pos-
terior distribution, with the minimizer corresponding to a
Maximum A Posteriori (MAP) estimate. Methods for un-
certainty quantification by convex optimization have also
been tailored recently, which enable assessing the degree of
confidence in specific structures appearing in the MAP esti-
mate (Repetti et al. 2018, 2019; Abdulaziz et al. 2019a). In
this work we focus solely on image estimation.

Convex optimization offers intrinsically parallel al-
gorithmic structures, such as proximal splitting meth-
ods (Combettes & Pesquet 2011; Komodakis & Pesquet
2015). In such algorithmic structures, multi-term objec-
tive functions can be minimized, all terms being handled
in parallel at each iteration. Each term is involved by ap-
plication of its so-called proximal operator, which acts as
a simple denoising operator (e.g. a sparsity regularization
term will induce a thresholding operator). The algorithms
of the SARA family are all powered by an advanced prox-
imal splitting method known as the primal-dual forward-
backward (PDFB) algorithm (Condat 2013; Vũ 2013; Pes-
quet & Repetti 2015). The splitting functionality of PDFB is
utilized in these approaches to enable the decomposition of
data into blocks and parallel processing of the block-specific
data-fidelity terms of the objective function, which provides
scalability to large data volumes. The SARA family however
models the image as a single variable, and the computational
and storage requirements induced by complex regularization
terms can be prohibitive for very large image size, in partic-
ular for wide-band imaging.

We address this bottleneck in the present work. We
propose to decompose the target image cube into regu-
lar, content-agnostic, spatially overlapping spatio-spectral
facets, with which are associated facet-specific regulariza-
tion terms in the objective function. We further exploit the
splitting functionality of PDFB to enable parallel processing
of the regularization terms and ultimately provide further
scalability.

Note that faceting is not a novel paradigm in RI
imaging: it has often been considered for calibration pur-
poses in the context of wide-field imaging, assuming piece-
wise constant direction-dependent effects. For instance, van
Haarlem, M. P. et al. (2013) proposed an image tessella-
tion scheme for LOFAR wide-field images, which has been
leveraged by Tasse et al. (2018) in the context of wide-

2 Associated software on the Puri-Psi webpage: https://

basp-group.github.io/Puri-Psi/.

https://basp-group.github.io/Puri-Psi/
https://basp-group.github.io/Puri-Psi/
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field wide-band calibration and imaging. However, except
for (Naghibzedeh et al. 2018) and to the best of the au-
thors’ knowledge, facet imaging has hitherto been essentially
addressed with CLEAN-based algorithms. This class of ap-
proaches not only lacks theoretical convergence guarantees,
but also does not offer much flexibility to accommodate ad-
vanced regularization terms. In contrast with (Naghibzedeh
et al. 2018), the proposed faceting approach does not need
to be tailored to the content of the image, and thus offers
more flexibility to design balanced facets exclusively based
on computational considerations.

The reconstruction performance of the Faceted Hyper-
SARA is evaluated against HyperSARA and SARA on syn-
thetic data. We further validate the performance and scala-
bility potential of our approach through the reconstruction
of a 15 GB image cube of Cyg A from 7.4 GB of VLA obser-
vations across 480 channels. Our results confirm the recent
discovery of Cyg A2, a second super-massive black hole in
Cyg A (Perley et al. 2017). Finally, we combine Faceted
HyperSARA with a joint image and data dimensionality re-
duction technique in order to provide further scalability. In
practice, acknowledging the slow spectral slope of Cyg A in
the frequency range of interest, we target a 16-fold reduction
in spectral resolution. We also apply a data dimensionality
reduction technique relying on visibility gridding, offering
here a 33-fold reduction in the data volume. We validate the
stable performance of Faceted HyperSARA on the reduced-
size inverse problem in comparison to the approach without
dimensionality reduction.

The remainder of the article is organized as follows.
Section 2 introduces the proposed faceted prior model and
associated objective function underpinning Faceted Hyper-
SARA. The associated algorithm is described in Section 3,
along with the different levels of parallelization exploited in
the proposed MATLAB implementation. Performance vali-
dation is first conducted on synthetic data in Section 4. We
successively evaluate the influence of spectral and spatial
faceting for a varying number of facets and spatial overlap,
both in terms of reconstruction quality and computing time.
Section 5 is focused on the validation of the proposed ap-
proach on real VLA observations in terms of precision and
scalability. Section 6 illustrates the potential of combining
Faceted HyperSARA and dimensionality reduction for fur-
ther scalability. Conclusions and perspectives are reported
in Section 7.

2 PRIOR MODEL AND OBJECTIVE
FUNCTION

In this section, focusing on optimization-based approaches,
we first recall the discrete version of the inverse problem
for RI image formation from visibility data. We then formu-
late the general structure of the objective function for the
state-of-the-art SARA and HyperSARA approaches. Finally,
we introduce spatio-spectral facets and the associated prior
model, leading to the formulation of the objective function
for the proposed Faceted HyperSARA approach.

(a) Full data cube (b) Per channel data (c) Data blocks

Figure 1. Illustration of the data blocking strategy. Starting from
the full data cube (a), each of the L channels represented in (b)

is decomposed into B data blocks (c). The data blocks for each

channel are associated with separate data-fidelity terms in the
objective function, processed by independent workers.

2.1 Wide-band inverse problem

Wide-band RI imaging consists in estimating unknown ra-
dio images of the sky over L frequency channels. Focusing
on intensity imaging, and assuming a small field of view on
the celestial sphere, each pair of antennae probes, at each
observation frequency, a Fourier component of the sky sur-
face brightness. The Fourier mode is given by the projec-
tion of the corresponding baseline in the plane perpendic-
ular to the line of sight, in units of the observation wave-
length (Thompson et al. 2007). The collection of data (called
visibilities) from all baselines accumulated over the whole
duration of observation provides an incomplete coverage of
the 2D Fourier plane (also called uv-plane) of the image of
interest. The RI measurements can be modeled for each fre-
quency channel index l ∈ {1, . . . , L} as (Abdulaziz et al. 2016,
2019b)

yl = Φlxl + nl, with Φl = ΘlGlFZ, (1)

where yl ∈ CMl is the vector of Ml visibilities acquired in the
channel l ∈ {1, . . . , L}, weighted with the diagonal noise-
whitening matrix Θl ∈ RMl×Ml . xl ∈ RN+ is the underlying
image. The vector nl ∈ CMl represents measurement noise,
modeled as a realization of a complex white Gaussian noise.
The measurement operatorΦl is composed of a zero-padding
and scaling operator Z ∈ RK×N , the 2D Discrete Fourier
Transform represented by the matrix F ∈ CK×K , and a non-
uniform Fourier transform interpolation matrix Gl ∈ CMl×K .
Each row of Gl contains a compact support interpolation
kernel centered at the corresponding uv-point (Fessler & Sut-
ton 2003), enabling the computation of the Fourier mode
associated with each visibility from surrounding discrete
Fourier points. Note that at the sensitivity of interest to
the new generation of radio telescopes, direction-dependent
effects (DDEs), of either atmospheric or instrumental origin,
complicate the RI measurement equation. For each visibility,
the sky surface brightness is pre-modulated by the product
of a DDE pattern specific to each antenna. The DDEs are
often unknown and need to be calibrated jointly with the
imaging process (Repetti et al. 2017; Repetti & Wiaux 2017;
Thouvenin et al. 2018; Birdi et al. 2019). Focussing here
on the imaging problem, i.e. assuming DDEs are known,
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they can simply be integrated into the forward model (1) by
building extended interpolation kernels into each row of Gl ,
resulting from the convolution of the non-uniform Fourier
transform kernel with a compact-support representation of
the Fourier transform of the involved DDEs. Finally, the
matrix Θl contains on its diagonal the inverse of the noise
standard deviation associated with each original measure-
ment. This assumes that the original visibility vector was
multiplied by Θl to produce a measurement vector yl af-
fected by a random independent and identically distributed
(i.i.d., or white) Gaussian noise. This noise-whitening oper-
ation corresponds to what is know as natural weighting in
RI imaging.

When addressing the model (1), a first bottleneck arises
from the sheer volume of the data. To address this issue,
Onose et al. (2016b, 2017) have proposed a data blocking
strategy, which has been exploited in the context of wide-
band imaging by Abdulaziz et al. (2019b). The visibility
vectors yl are decomposed into B blocks (yl,b)1≤b≤B, which
can be handled in parallel by advanced imaging algorithms.
The data model (1) can thus be formulated for any (l, b) ∈
{1, . . . , L} × {1, . . . , B} as

yl,b = Φl,bxl + nl,b, with Φl,b = Θl,bGl,bFZ, (2)

where yl,b ∈ CMl,b is the vector of Ml,b visibilities associ-
ated with the b-th block in the channel l. Different blocking
strategies can be adopted, e.g. based on a tessellation of
the uv-space into balanced sets of visibilities (Onose et al.
2016b), or on a decomposition of the data into groups of
snapshots (Dabbech et al. 2018) (see Figure 1).

2.2 General form of the objective function

Estimating the underlying wide-band sky image X =

(xl)1≤l≤L from incomplete Fourier measurements is a
severely ill-posed inverse problem, which calls for powerful
regularization terms to encode a prior image model. In this
context, wide-band RI imaging can be formulated as the
following constrained optimization problem

minimize
X=(xl )1≤l≤L ∈RN×L

+

L∑
l=1

B∑
b=1

ιB(yl,b,εl,b )
(
Φl,bxl

)
+ r(X), (3)

where the indices (l, b) ∈ {1, . . . , L}×{1, . . . , B} refer to a data
block b of channel l, B(yl,b, εl,b) =

{
z ∈ CMl,b | ‖z − yl,b ‖2 ≤

εl,b
}

denotes the `2-ball centred in yl,b of radius εl,b > 0,
and εl,b reflects the noise statistics. The notation ιB(yl,b,εl,b )
denotes the indicator function of the `2 ball B(yl,b, εl,b).
Specifically, let C be a non-empty, closed, convex subset of
CN , then ιC denotes the indicator function of C, defined by
ιC(z) = +∞ if z ∈ C and 0 otherwise. On the one hand, the
indicator functions ιB(yl,b,εl,b ) act as data-fidelity terms, in
that they ensure the consistency of the modeled data with
the measurements and reflect the white Gaussian nature of
the noise (Carrillo et al. 2012). On the other hand, the func-
tion r encodes a prior model of the unknown image cube.
The priors characterizing the state-of-the-art SARA and Hy-
perSARA approaches, as well as the proposed Faceted Hy-
perSARA approach, are discussed in what follows. Finally,
note that an additional non-negativity prior is imposed in all
approaches of the SARA family focusing on intensity imag-
ing, with the aim to preserve the physical consistency of the

estimated surface brightness. This generalizes to the polar-
ization constraint when solving for all the Stokes parameters

2.3 State-of-the-art average sparsity priors

Sparsity-based priors combined with optimization tech-
niques have proved to be very efficient for astronomical
imaging, in particular in the context of radio interferome-
try (Wiaux et al. 2009; Carrillo et al. 2012; Garsden et al.
2015; Onose et al. 2016b). These techniques aim to solve the
underlying image recovery problem by enforcing sparsity of
the estimated image in an appropriate domain.

In this context, the prior of choice is the `0 pseudo-norm,
which counts the number of non-zero coefficients of its ar-
gument (Donoho 2006). However, minimizing this function,
which is neither convex nor smooth, is a NP-hard problem.
A common alternative consists in replacing it by its convex
envelope, the `1 norm (Donoho & Stark 1989; Donoho &
Logan 1992). When combined to other convex terms, e.g.
the non-negativity constraint and the `2-ball data-fidelity
constraint in (3), `1-norm priors form a convex objective
function, which can be efficiently minimized by powerful it-
erative algorithms under well-established guarantees on the
convergence of the iterates towards a global minimum.

Although the `1 prior has been widely used over the last
decades to promote sparsity, it induces an undesirable de-
pendence on the coefficients’ magnitude. Indeed, unlike the
`0 prior, the `1 norm penalizes more the larger coefficients
than the smaller. To address this imbalance, a log-sum prior
can be used. In particular, Candès & Boyd (2008); Candès
et al. (2009) proposed to use a majorization-minimization
framework (Hunter & Lange 2004) to minimize objective
functions with a log-sum prior, leading to a reweighted-`1
approach consisting in minimizing a sequence of convex ob-
jectives with weighted `1 norm priors, acting as convex re-
laxations of the log-sum prior. In practice, sequentially min-
imizing convex problems with weighted-`1 priors is indeed
much simpler than minimizing a non-convex problem with
a log-sum prior. From a convergence point of view, mul-
tiple works have recently shown that the set of minimiz-
ers resulting from a reweighted-`1 procedure coincides with
the one obtained by minimizing a problem with log-sum
prior (Ochs et al. 2015; Geiping & Moeller 2018; Ochs et al.
2019; Repetti & Wiaux 2019). In the following paragraphs,
the SARA (Carrillo et al. 2012) and HyperSARA (Abdu-
laziz et al. 2019b) log-sum priors are presented, considered
as benchmarks to assess the proposed spatio-spectral faceted
prior.

2.3.1 SARA prior

The image prior underpinning the Sparse Averaging
Reweighted Analysis (SARA) has proved efficient for astro-
nomical imaging, and in particular for RI imaging (Carrillo
et al. 2012; Onose et al. 2016b; Abdulaziz et al. 2019b). It
promotes sparsity by minimizing a log-sum prior , consid-
ering a highly redundant transformed domain Ψ† ∈ RN×I
defined as the concatenation of wavelet bases (first eight
Daubechies wavelets and the Dirac basis), leading to the
notion of average sparsity over the bases of interest. The
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(a) Full image cube (b) Spectral sub-cubes (c) Facets &
weights

Figure 2. Illustration of the proposed faceting scheme, using a
2-fold spectral interleaving process and 9-fold spatial tiling pro-

cess. The full image cube variable (a) is divided into two spectral

sub-cubes (b) with interleaved channels (for a 2-fold interleav-
ing, even and odd channels respectively define a sub-cube). Each

sub-cube is spatially faceted. A regular tessellation (dashed red

lines) is used to define spatio-spectral tiles. The spatio-spectral
facets result from the augmentation of each tile to produce an

overlap between facets (solid red lines). Panel (c) shows a sin-

gle facet (left), as well as the spatial weighting scheme (right)
with linearly decreasing weights in the overlap region. Note that,

though the same tiling process is underpinning the nuclear norm
and `21 norm regularization terms, the definition of the appro-

priate overlap region is specific to each of these terms (via the

selection operators Sq and S̃q in (9)).

log-sum prior addressed by SARA is of the form

r(X) = µ̃
L∑
l=1

I∑
i=1

log
(
|[Ψ†X]i,l | + υ

)
, (4)

where µ̃ > 0 and υ > 0 are regularization parameters, and
[Ψ†X]i,l denotes the (i, l)-th coefficient of Ψ†X.

This prior is fully separable with respect to the spec-
tral channels, similarly to the data-fidelity term in (3). In
this setting, the wide-band objective function naturally sep-
arates into L independent, single-channel objective functions
underpinning the monochromatic SARA approach defined
by Carrillo et al. (2012); Onose et al. (2016b). This approach
is therefore highly parallelizable, and will be taken as a ref-
erence in terms of computing time.

In practice, each single-channel term in the objective (3)
is solved with a reweighting approach leveraging PDFB. The
splitting functionality of this advanced proximal algorithm
structure is in particular utilized to enable the parallel pro-
cessing of the block-specific data-fidelity terms for scalabil-
ity. Note that the parameter µ̃ does not affect the minimizers
of the objective. Onose et al. (2016b) suggested that setting
µ̃ in the range [10−5, 10−3] provides good convergence speed
in practice.

2.3.2 HyperSARA prior

Unlike the SARA prior, the recently proposed HyperSARA
prior (Abdulaziz et al. 2019b) aims to explicitly promote
spectral correlations. In particular, it promotes low-rankness
of X resulting from the correlation of its channels, as well as
average spatial sparsity over all frequency channels. Specif-

ically, the log-sum prior of interest is of the form

r(X) = µ
J∑
j=1

log
(
|σj (X)| + υ

)
+ µ

I∑
i=1

log
(
‖[Ψ†X]i ‖2 + υ

)
, (5)

where (µ, µ, υ) ∈]0,+∞[3 are regularization parameters, J ≤
min{N, L} is the rank of X,

(
σj (X)

)
1≤ j≤J are the singular

values of X, and [Ψ†X]i denotes the i-th row of Ψ†X.
HyperSARA has been shown to produce image cubes

with superior quality when compared to SARA and the
wide-band clean-based approach JC-CLEAN (Abdulaziz
et al. 2019b). The fundamental reason for this is that the
number of degrees of freedom to be reconstructed when
adding frequency channels increases more slowly than the
amount of data due to the correlation between the chan-
nels. Also, because the magnitude of the spatial frequency
probed by an antenna pair is proportional to the observation
frequency, the uv-coverage at a higher frequency channel is a
dilated version of the uv-coverage at a lower frequency, with
the dilation parameter between two channels given by the
frequency ratio. Consequently, the data at higher frequency
channels provide higher spatial frequency information for
the lower frequency channels, thus contributing to better
precision of the image reconstruction process, both in terms
of resolution and dynamic range. HyperSARA will thus be
taken as a reference in terms of imaging quality in Section 4.

In practice, the wide-band objective (3) is also solved
with a reweighting procedure relying on PDFB, with the
splitting functionality again utilized to enable the parallel
processing of the block-specific data-fidelity terms for scala-
bility. The regularization terms at the core of HyperSARA
are however not separable, with the full image cube mod-
eled as a single variable. This entails memory and com-
puting requirements scaling with the size of the full im-
age cube. The gist of the present contribution is to ad-
dress this bottleneck by introducing spatio-spectral image
facets. Note that Abdulaziz et al. (2019b) have shown that
the regularization parameters can be set as µ = 1, and
µ = ‖Xdirty‖∗/‖Ψ†Xdirty‖2,1, where Xdirty denotes the dirty
image cube. Again, in theory, only the ratio of these param-
eters affects the minimizers of the objective.

2.4 Faceting and Faceted HyperSARA prior

The proposed Faceted HyperSARA prior builds on the Hy-
perSARA prior, distributing both the average sparsity and
the low-rankness prior over multiple spatio-spectral facets to
alleviate the computing and storage requirements inherent
to HyperSARA. In particular, we propose to decompose the
3D image cube into Q×C spatio-spectral facets, as illustrated
in Figure 2 and detailed below.

2.4.1 Spectral faceting

The wide-band image cube can first be decomposed into sep-
arate image sub-cubes composed of a subset of the frequency
channels, with a separate prior for each sub-cube. Since the
data-fidelity terms are channel-specific, the overall objective
function (3) reduces to the sum of independent objectives
for each sub-cube. The smaller-size wide-band imaging sub-
problems (smaller data sets, and smaller image volumes)
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can thus be solved independently in parallel, offering scal-
ability. Taken to the extreme, this simple spectral faceting
can be used to separate all channels and proceed with single-
channel reconstructions (leading to SARA), however simul-
taneously loosing completely the advantage of correlations
between frames to improve image precision. The key point
is to keep an appropriate number of frames per sub-cube in
order to optimally take advantage of this correlation. Also,
given the data at higher frequency channels provide higher
spatial frequency information for the lower frequency chan-
nels, it is of critical importance that the whole extent of the
frequency band of observation be exploited in each channel
reconstruction. In this context, we propose to decompose
the cube into channel-interleaved spectral sub-cubes, each
of which results from a uniform sub-sampling of the whole
frequency band (see Figure 2 (b)). We thus decompose the
original inverse problem (1) into C independent, channel-
interleaved sub-problems, each considering Lc channels from
the original data cube, with L = L1 + . . .+ LC . For each sub-
cube c ∈ {1, . . . ,C}, yc,l,b ∈ CMc, l,b denotes the vector of
Mc,l,b visibilities associated with the channel l ∈ {1, . . . , Lc}
and data-block b ∈ {1, . . . , B}, and by Φc,l,b and εc,l,b the
associated measurement operator and `2 ball radius, respec-
tively. The initial minimization problem (3) is thus reformu-
lated as

minimize
X∈RN×L

+

C∑
c=1

( Lc∑
l=1

B∑
b=1

ιB(yc, l,b,εc, l,b )
(
Φc,l,bxc,l

)
+ rc(Xc)

)
, (6)

where, for every c ∈ {1, . . . ,C}, Xc = (xc,l)1≤l≤Lc
∈ RN×Lc is

the c-th sub-cube of the full image cube X, with xc,l ∈ RN the
l-th image of the sub-cube Xc , and rc : RN×Lc →] − ∞,+∞]
is a sub-part of the regularization term, only acting on the
c-th sub-cube.

2.4.2 Spatial faceting

Faceting can also be performed in the spatial domain by
decomposing the regularization term for each spectral sub-
cube into a sum of terms acting only locally in the spa-
tial domain (see Figure 2 (c)). In this context, the resulting
facets will need to overlap in order to avoid edge effects,
so that the overall objective function (6) will take the form
of the sum of inter-dependent facet-specific objectives. This
inter-dependence precludes separating the imaging problem
into facet problems. However, the splitting functionality of
PDFB can be exploited to enable parallel processing of the
facet-specific regularization terms and ensure further scala-
bility (see Section 3).

On the one hand, we propose to split the average
sparsity dictionary Ψ† into Q smaller wavelet decomposi-
tion, leveraging the wavelet splitting technique introduced
in Pruša (2012, Chapter 4). Pruša (2012) proposed an exact
implementation of the discrete wavelet transform distributed
over multiple facets. In this context, the Daubechies wavelet
bases are decomposed into a collection of facet-based oper-
ators Ψ†q ∈ RIq×Nq acting only on the q-th facet of size Nq ,
with I = I1 + . . .+ IQ. The overlap needed to ensure an exact
faceted implementation of the wavelet transforms is com-
posed of a number of pixels between 15(2s −2) and 15(2s −1)

in each spatial direction (Pruša 2012, Section 4.1.4), with
s being the level of decomposition. In practice, the overlap
ensures that each facet contains all the information needed
to compute the convolutions underlying the discrete wavelet
transforms locally.

On the other hand, we consider a faceted low-rank prior
enforced by the sum of nuclear norm priors on essentially the
same overlapping facets as those introduced for the wavelet
decomposition. This provides a more tractable alternative
to the global low-rank prior encoded by the nuclear norm
of HyperSARA. Unlike the wavelet decomposition, there is
no equivalent faceted implementation of the eigen-value de-
composition. To mitigate reconstruction artifacts possibly
resulting from the faceting of the 3D image cube, for each
facet q ∈ {1, . . . ,Q}, of size Ñq , we propose to introduce a

diagonal matrix Dq ∈]0,+∞[Ñq×Ñq ensuring a smooth tran-
sition from the borders of one facet to its neighbours. A
natural choice consists in down-weighting the contribution
of pixels involved in multiple facets. A tapering window de-
caying in the overlapping regions is considered, while ensur-
ing that the sum of all the weights associated with each pixel
is equal to unity. In this work, we consider weights in the
form of a 2D triangular apodization window as considered
by Murya et al. (2017) (see Figure 2 (c)). The size of the
overlap for this term is taken as an adjustable parameter of
the Faceted HyperSARA approach to further promote lo-
cal correlations. Its influence is investigated in Section 4. In
practice, a larger overlap region than the one taken for the
faceted wavelet transform is considered, taking advantage of
the overlap already imposed by the faceted implementation
of the wavelet decomposition and the associated `2,1 norm
priors.

The spatial faceting procedure therefore results in split-
ting the original log-sum priors of HyperSARA in (5) into a
sum of inter-dependent facet-specific log-sum priors, defin-
ing the Faceted HyperSARA prior:

rc(Xc) =
Q∑
q=1

(
µc

Jc,q∑
j=1

log
(
|σj (Dq S̃qXc)| + υ

)
+ µc

Iq∑
i=1

log
(
‖[Ψ†qSqXc]i ‖2 + υ

) )
. (7)

In (7), (µc, µc, υ) ∈]0,+∞[3 are regularization parameters,
and, for every q ∈ {1, . . . ,Q}, Jc,q ≤ min(Ñq, Lc) is the rank of

Dq S̃qXc , and S̃q ∈ RÑq×N and Sq ∈ RNq×N extract spatially
overlapping spatio-spectral facets from the full image cube
for the low-rankness prior and the average sparsity prior,
respectively. These two operators only differ in the amount
of overlapping pixels considered, which is defined as an ad-
justable parameter for S̃q , and prescribed by Pruša (2012)
for Sq (Figure 2). Each facet relies on a spatial decomposi-
tion of the image into non-overlapping tiles (see Figure 2 (b),
delineated by dashed red lines), each overlapping with its top
and left spatial neighbour. In the following, the overlapping
regions will be referred to as the borders of a facet, in con-
trast with its underlying tile (see Figure 2). An edge facet,
i.e. which does not admit a neighbour in one of the two spa-
tial dimensions, has the same dimension as the underlying
tile in the direction where it does not admit a neighbour
(e.g. corner facets have the same dimension as the under-
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lying tile). Note that HyperSARA corresponds to the case
Q = C = 1.

The reweighting approach utilized to minimize the ob-
jective (6) with the log-sum priors (7) via convex relaxations
powered by PDFB is described in Section 3. Crucially, the
splitting functionality of PDFB will be exploited to enable
parallel processing of these facet-specific priors, more specif-
ically their convex relaxations. Note that the appropriate
values for the parameters µc and µc will be investigated via
simulation and in relation to the corresponding parameter
values for HyperSARA in Section 4.

3 FACETED HYPERSARA

The parallel algorithmic structure of Faceted HyperSARA
is described in this section, leveraging PDFB within a
reweighting approach to handle the log-sum priors. Imple-
mentation details are also discussed.

3.1 Outer reweighting algorithm

To efficiently address the log-sum prior underpinning the
Faceted HyperSARA prior, we resort to a majorize-minimize
algorithm similar to the one proposed by (Candès et al.
2009), leading to a reweighting approach described in Al-
gorithm 1.

At each iteration p ∈ N of Algorithm 1, problem (6) is
majorized at the local estimate X(p) by a convex approxima-
tion, and then minimized using a PDFB algorithm described
in Algorithm 2 (see Algorithm 1 line 6). For each sub-cube
c ∈ {1, . . . ,C}, the convex approximated minimization prob-
lem is of the form

minimize
Xc ∈RN×L

+

Lc∑
l=1

B∑
b=1

ιB(yc, l,b,εc, l,b )
(
Φc,l,bxc,l

)
+ r̃c(Xc,X(p)c ), (8)

where r̃c(·,X(p)c ) is a convex local majorant function of rc at

X(p)c , corresponding to the weighted hybrid norm prior

r̃c(Xc,X(p)c ) =
Q∑
q=1

(
µc ‖Dq S̃qXc ‖∗,ωq (X(p)c )

+ µc ‖Ψ†qSqXc ‖2,1,ωq (X(p)c )

)
, (9)

where, for every q ∈ {1, . . . ,Q}, the weights ωq(X(p)c ) =(
ωq, j (X(p)c )

)
1≤ j≤Jc,q and ωq(X(p)c ) =

(
ωq,i(X(p)c )

)
1≤i≤Iq are

given by

ωq, j (X(p)c ) =
(
σj

(
Dq S̃qX(p)c

)
+ υ

)−1
, (10)

ωq,i(X(p)c ) =
(
‖[Ψ†qSqX(p)c ]i ‖2 + υ

)−1
. (11)

At the beginning of the algorithm, the weights are initial-
ized to one (see Algorithm 1 line 3, where the notation 1Jc
stands for the vector of size Jc with all coefficients equal to
1, and Jc = Jc,1 + . . . + Jc,Q). Note that the weights defined
in (10)-(11) are multiplied by the regularization parameter

υ in Algorithm 1, which is equivalent to re-scaling the sub-
problem (8) by υ. This does not affect the set of minimizers
of the global problem3.

A complete description of the PDFB-powered algorithm
used to solve the sub-problems (8) is provided in the next
section.

Algorithm 1: Outer reweighting algorithm.

Input: X(0) = (X(0)c )c , P(0) = (P(0)c )c , W(0) = (W(0)c )c ,

v(0) = (v(0)c )c
1 p ← 0;

// Initialization of the weights

2 for c = 1 to C do

3 θ(0)c = (θ
(0)
c,q )1≤q≤Q = 1I ; θ

(0)
c = (θ

(0)
c,q )1≤q≤Q = 1Jc ;

4 while stopping criterion not satisfied do

// Solve spectral sub-problems in parallel

5 for c = 1 to C do

// Run Algorithm 2

6 (X(p+1)
c , P(p+1)

c ,W(p+1)
c , v(p+1)

c ) =
Algorithm2

(
X(p)c , P(p)c ,W(p)c , v(p)c , θ

(p)
c , θ

(p)
c

)
;

7 for q = 1 to Q do

// Update weights: low-rankness prior

8 θ
(p+1)
c,q = υωq (X(p+1)

c ); // using (10)

// Update weights: joint-sparsity prior

9 θ
(p+1)
c,q = υωq (X(p+1)

c ); // using (11)

10 p ← p + 1;

Result: X(p), P(p), W(p), v(p)

3.2 Inner convex optimization algorithm

A primal-dual algorithmic structure as PDFB works by
jointly solving the problem (8), referred to as the primal
problem, and its dual formulation in the sense of the Fenchel-
Rockafellar duality theory (Bauschke & Combettes 2017).
The splitting functionality will enable all block-specific data-
fidelity terms and facet-specific regularization terms to be
updated in parallel via their proximal operator. In this work,
we resort to a preconditioned variant of PDFB, which uses
proximal operators with respect to non-Euclidean metrics
in order to reduce the number of iterations necessary to
converge. Let U ∈ Rn×n be a symmetric, positive definite
matrix. The proximal operator of a proper, convex, lower
semi-continuous function f : Rn →] − ∞,+∞] at z ∈ Rn with
respect to the metric induced by U is defined by (Moreau
1965; Hiriart-Urruty & Lemaréchal 1993)

proxU
f (z) = argmin

x∈Rn

{
f (x) + 1

2
(x − z)†U(x − z)

}
. (12)

The more compact notation prox f is used when U = In,
where In is the identity matrix in Rn×n. In addition, when
the function f corresponds to an indicator function of a

3 Previous works from Carrillo et al. (2012); Onose et al. (2016b);

Abdulaziz et al. (2019b) suggest that the regularization parameter
υ in (10)-(11) should decrease from one iteration p to another by
a factor 80% to improve the convergence rate and the stability of

the algorithm. This procedure is also adopted in this article.
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Algorithm 2: Inner convex optimisation algorithm
for each spectral sub-problem (8), powered by PDFB.

Data: (yc, l,b )l,b , l ∈ {1, . . . , Lc }, b ∈ {1, . . . , B}
Input: X(0)c , P(0)c =

(
P(0)c,q

)
q , W(0)c =

(
W(0)c,q

)
q ,

v(0)c =
(
v(0)
c, l,b

)
c, l,b , θc =

(
θc,q

)
1≤q≤Q ,

θc =
(
θc,q

)
1≤q≤Q

Parameters: (Dc,q )q , (Uc, l,b )l,b , (εc, l,b )l,b , µc , µc , τ,

ζ , η, κ

1 k ← 0; ξ = +∞; X̌(0)c = X(0)c ;

2 while ξ > 10−5 do

// Broadcast auxiliary variables

3 for q = 1 to Q do

4 X̃(k)c,q = S̃q X̌(k)c ; X̌(k)c,q = Sq X̌(k)c ;

5 for l = 1 to Lc do

6 x̂(k)
c, l
= FZx̌(k)

c, l
; // Fourier transforms

7 for b = 1 to B do

8 x̂(k)
c, l,b

=Mc, l,b x̂(k)
c, l

; // send to data cores

// Update low-rankness variables [facet cores]

9 for q = 1 to Q do

10 P(k+1)
c,q =

(
IJq −proxζ−1µc ‖·‖∗,θc,q

) (
P(k)c,q+Dc,q X̃(k)c,q

)
;

11 P̃(k+1)
c,q = D†qP(k+1)

c ;

// Update sparsity variables [facet cores]

12 for q = 1 to Q do

13 W(k+1)
c,q =(
IIq − proxκ−1µc ‖·‖2,1,θc,q

) (
W(k)c,q + Ψ

†
q X̌(k)c,q

)
;

14 W̃(k+1)
c,q = ΨqW(k+1)

c,q ;

// Update data fidelity variables [data cores]

15 for (l, b) = (1, 1) to (Lc , B) do

16 v(k+1)
c, l,b

=

Uc, l,b
(
IMc, l,b

−proxUc, l,b
ιB(yc, l,b , εc, l,b )

) (
U−1
c, l,b

v(k)
c, l,b

+

Θc, l,bGc, l,b x̂(k)
c, l,b

)
;

17 ṽ(k+1)
c, l,b

= G†
c, l,b

Θ†
c, l,b

v(k+1)
c, l,b

;

// Inter node communications

18 for l = 1 to Lc do

19 a(k)
c, l
=

Q∑
q=1

(
ζ S̃†q p̃(k+1)

c,q, l
+ κS†q w̃(k+1)

c,q, l

)
+

20 ηZ†F†
∑
b

M†
c, l,b

ṽ(k+1)
c, l,b

;

// Update image tiles [on facet cores, in

parallel]

21 X(k+1)
c = proxι

R
N×Lc
+

(
X(k)c − τA(k)c

)
;

22 X̌(k)c = 2X(k+1)
c − X(k)c ; // communicate facet

borders

23 ξ = ‖X(k+1)
c − X(k)c ‖F/‖X

(k)
c ‖F;

24 k ← k + 1 ;

Result: X(k)c , P(k)c , W(k)c , v(k)c

closed, non-empty, convex set, then its proximal operator
reduces to the projection operator onto this set.

A graphical illustration of the PDFB-powered algorithm
to solve problem (8) is given in Figure 3. A formal de-
scription is reported in Algorithm 2. First, the faceted low-
rankness prior is handled in lines 9-11 by computing in par-
allel the proximal operator of the per facet weighted nuclear

Table 1. proximal operators involved in Algorithm 2.

proximal operator for α > 0 Details

proxα‖·‖∗ (Z) = U Diag
(
proxα‖·‖1 (σ)

)
V† Z = UΣV† ∈ RN×L , Σ = Diag(σ)

singular value decomposition of Z

proxα‖·‖2,1 (Z) =
(
max

{
‖z†n ‖2 − α, 0

} z†n
‖z†n ‖2

)
1≤n≤N

Z = [z1, . . . , zN ]† ∈ RN×L

proxιB(yc, l,b , εc, l,b )
(z) = εc, l,b

z − yc, l,b
‖z − yc, l,b ‖2

+ yc, l,b z ∈ CMc, l,b

proxι
RN×L+

(Z) = max
{
0,<(Z)

}
Z ∈ CN×L , <(Z) denotes the real part of Z

norms (see Table 1). Second, the average sparsity prior is
addressed in lines 12-14 by computing the proximal opera-
tor of the per facet weighted `2,1 norm in parallel (see Ta-
ble 1). Third, the data-fidelity terms are handled in parallel
in lines 15-17 by computing, for every data block (c, l, b), the
projection onto the `2 balls B(yc,l,b, εc,l,b) with respect to
the metric induced by the diagonal matrices Uc,l,b, chosen
using the preconditioning strategy proposed by Onose et al.
(2017); Abdulaziz et al. (2019b). More precisely, their diago-
nal coefficients are the inverse of the sampling density in the
vicinity of the probed Fourier modes. The projections onto
the `2 balls for the metric induced by Uc,l,b do not admit
an analytic expression, and thus need to be approximated
numerically through sub-iterations. In this work, we resort
to FISTA (Beck & Teboulle 2009), which iteratively approx-
imates this projection by computing Euclidean projections
onto the `2 balls B(yc,l,b, εc,l,b) (see Table 1). Finally, the
non-negativity constraint is handled in line 21 by comput-
ing the Euclidean projection onto the non-negative orthant
(see Table 1).

Algorithm 2 is guaranteed to converge to a global solu-
tion to problem (8), for a given sub-cube c ∈ {1, . . . ,C}, pro-
vided that the preconditioning matrices (Uc,l,b)c,l,b and the
parameters (τ, ζ, η, κ) satisfy technical conditions described in
(Pesquet & Repetti 2015, Lemma 4.3). In particular, these
conditions are satisfied for our choice of parameters: τ = 1/3,

ζ = 1, η = 1/‖U1/2
c Φc ‖2S, κ = 1/‖Ψ†‖2S, where ‖·‖S denotes

the spectral norm of a linear operator.
Note that PDFB can accommodate randomization in

the update of the variables, e.g. by randomly selecting a
subset of the data and facet dual variables to be updated
at each iteration. This procedure can significantly alleviate
the memory load per node (Pesquet & Repetti 2015) at the
expense of an increased number of iterations for the algo-
rithm to converge. This feature, which has been specifically
investigated for wide-band imaging (Abdulaziz et al. 2017)
and facet-based monochromatic imaging (Naghibzedeh et al.
2018), is not leveraged in the implementation of Algorithm 2
used for the experiments reported in Sections 4, 5 and 6.

3.3 Implementation

To solve a spectral sub-problem c ∈ {1, . . . ,C}, different par-
allelization strategies can be adopted, depending on the com-
puting resources available and the size of the problem to be
addressed. We propose to divide the variables to be esti-
mated into the two following groups of computing cores.

• Data cores: Each core involved in this group is respon-
sible for the update of several dual variables vc,l,b ∈ CMc, l,b

associated with the data-fidelity terms (see Algorithm 2
line 16). These cores produce auxiliary variables ṽc,l,b ∈ RN
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Figure 3. Illustration of the two groups of cores described in Section 3, with the main steps involved in Algorithm 2 applied to each

independent sub-problem c ∈ {1, . . . ,C }, using Q facets (along the spatial dimension) and B = 1 data block per channel. Data cores
handle variables of the size of data blocks (Algorithm 2 lines 15–17), whereas facet cores handle variables of the size of a spatio-spectral

facet (Algorithm 2 lines 9–14), respectively. Communications between the two groups are represented by colored arrows. Communications

between facet cores, induced by the overlap between the spatio-spectral facets, are illustrated in Figure 4.

Nx,q

Ny,q

Lc

(a) Broadcast values of the tile

before facet update in dual

space

Nx,q

Ny,q

Lc

⊕

⊕

⊕

(b) Broadcast and average

borders before tile update in

primal space

Figure 4. Illustration of the communication steps involving a

facet core (represented by the top-left rectangle in each sub-figure)

and a maximum of three of its neighbours. The tile underpinning
each facet, located in its bottom-right corner, is delineated in

thick black lines. At each iteration, the following two steps are
performed sequentially. (a) Facet borders need to be completed
before each facet is updated independently in the dual space (Al-

gorithm 2 lines 9–14): values of the tile of each facet (top left)

are broadcast to cores handling the neighbouring facets in order
to update their borders (Algorithm 2 line 4). (b) Parts of the

facet tiles overlapping with borders of nearby facets need to be
updated before each tile is updated independently in the primal
space (Algorithm 2 line 20): values of the parts of the borders

overlapping with the tile of each facet are broadcast by the cores
handling neighbouring facets, and averaged.

of single channel image size, each assumed to be held in
the memory of a single core (line 17). Note that the Fourier
transform computed for each channel l in line 6 is performed
once per iteration on the data core (l, 1). Each data core

(l, b), with b ∈ {2, . . . , B}, receives only a few coefficients of
the Fourier transform of xl from the data core (l, 1), selected
by the operator Mc,l,b (line 8);
• Facet cores: Each worker involved in this group, com-

posed of Q cores, is responsible for the update of an image
tile (i.e. a portion of the primal variable) and the dual vari-
ables Pc,q and Wc,q associated with the low-rankness and
the joint average sparsity prior respectively (Algorithm 2,
lines 10 and 13). Note that the image cube is stored across
different facet cores, which are responsible for updating their
image tile (line 21). Since the facets underlying the proposed
prior overlap, communications involving a maximum of 4
contiguous facet cores are needed to build the facet borders
prior to updating the facets independently in the dual space
(Algorithm 2 lines 9–14). Values of the tile of each facet are
broadcast to cores handling neighbouring facets in order to
update their borders (Algorithm 2 line 4, see Figure 4(a)).
In a second step, parts of the facet tiles overlapping with
borders of nearby facets need to be updated before each tile
is updated independently in the primal space (Algorithm 2
line 20). More precisely, values of the parts of the borders
overlapping with the tile of each facet are broadcast by the
workers handling neighbouring facets, and averaged (see Fig-
ure 4(b)).

A MATLAB implementation of Algorithms 1 and 2 is
available on the Puri-Psi webpage. Both HyperSARA and
Faceted HyperSARA rely on MPI-like MATLAB paralleliza-
tion features based on the spmd MATLAB function, based
on composite MATLAB variables to handle parameters dis-
tributed across several cores (e.g. for the wide-band image
cube). In practice, 1 process running either on 1 CPU core
(physical core) or one hyperthread (logical core) specifically

https://basp-group.github.io/Puri-Psi/
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ensures communication synchronization between the data
and facet cores. In the following, this process will be referred
to as the master process, hosted on a CPU core referred to
as the master CPU core.

4 VALIDATION ON SYNTHETIC DATA

In this section, the impact of spatial faceting is first assessed
in terms of both reconstruction quality and computing time
for a single spectral sub-problem, using a varying number of
facets and a varying size of the overlapping regions. The im-
pact of spectral faceting on the reconstruction performance
of Faceted HyperSARA is then quantified for a single un-
derlying facet along the spatial dimension (Q = 1). Results
are compared with those of both SARA and HyperSARA.

4.1 Simulation setting

4.1.1 Images and data

Following the procedure described by Abdulaziz et al.
(2019b), a wide-band model image composed of L spec-
tral channels is simulated from an image of the W28 su-
pernova remnant of size N, considering B = 1 data block
per channel. The measurement operator relies on a realis-
tic VLA uv-coverage, generated within the frequency range
[ν1, νL] = [1, 2] GHz with uniformly sampled channels and a
total observation time of 6 hours. Note that the uv-coverage
associated with each channel l corresponds to the reference
uv-coverage at the frequency ν1 scaled by the factor νl/ν1.
The data are corrupted by an additive, zero-mean complex
white Gaussian noise of variance σ2. An input signal-to-
noise ratio (iSNR) of 60 dB is considered, which is defined
as

iSNR = 10 log10

(∑
l ‖Φlxl ‖22/Ml

Lσ2

)
.

Note that, given the larger computational cost of Hy-
perSARA, the size of the data is chosen so that it can be run
in a reasonable amount of time for the different simulation
scenarios described below.

4.1.2 Spatial faceting

The performance of Faceted HyperSARA is first evaluated
with C = 1 (number of facets along the spectral dimension)
for different parameters of the spatial faceting. Data gen-
erated from a N = 1024 × 1024 image composed of L = 20
channels are considered, with Ml = 0.5N measurements per
channel. The assessment is conducted with (i) varying Q
(number of facets along the spatial dimensions) and a fixed
overlap; (ii) a fixed number of facets and a varying spa-
tial overlap for the nuclear norm regularization. Additional
details can be found in the following lines. Regarding the
choice of the regularization parameters, we set µ̃ = 10−3

for SARA as explained in Section 2.3.1. As prescribed in
Section 2.3.2, the regularization parameters of HyperSARA
are set as µ = 1, and µ = ‖Xdirty‖∗/‖Ψ†Xdirty‖2,1 = 10−3.
For Faceted HyperSARA, we have observed that setting

µc = 1 and µc = 10−2‖Xdirty
c ‖∗/‖Ψ†Xdirty

c ‖2,1 = 10−5 leads

to a good trade-off to recover high resolution, high dynamic
range model cubes.

• Varying overlap: Reconstruction performance and com-
puting time are evaluated with C = 1 and Q = 16 (4 facets
along each spatial dimension) and a varying size of the over-
lapping region for the faceted nuclear norm (0%, 6%, 20%,
33% and 50% of the spatial size of the facet, correspond-
ing to 0, 16, 64, 128 and 256 pixels respectively) in each of
the two spatial dimensions. Note that the overlap for the
`2,1 prior is a fixed parameter (Pruša 2012). The compari-
son is conducted between SARA, HyperSARA, and Faceted
HyperSARA.
• Varying number of facets: The reconstruction perfor-

mance and computing time of Faceted HyperSARA are re-
ported for experiments with Q ∈ {4, 9, 16} (corresponding to
2, 3 and 4 facets along each spatial dimension) with a fixed
overlap corresponding to 50% of the spatial size of a facet.
The regularization parameters are set to the same values as
those considered in the experiment with a varying overlap.

4.1.3 Spectral faceting

The influence of spectral faceting is evaluated in terms of
computing time and reconstruction quality from data gen-
erated with a ground truth image composed of N = 256×256
pixels in L = 100 channels, with Ml = N measurements per
channel. The overall reconstruction performance of SARA,
HyperSARA and Faceted HyperSARA with a single facet
along the spatial dimension (Q = 1) is compared. For faceted
HyperSARA, a channel-interleaving process with a varying
number of facets along the spectral dimension C is con-
sidered (see Section 2.4 and Figure 2 (b)). The simula-
tion scenario involves facets composed of a varying num-
ber of channels Lc (Lc ≈ 6, 10, 14, 20, 33 and 50 chan-
nels for each sub-problem c ∈ {1, . . . ,C}) obtained by down-
sampling the data cube along the frequency dimension. For
the choice of the regularization parameters, we set µ̃ = 10−2

for SARA. Our simulations indeed show that increasing the
value beyond the range suggested in Onose et al. (2016b)
provides better convergence speed. As prescribed in Sec-
tion 2.3.2, the regularization parameters of HyperSARA are
set as µ = 1, and µ = ‖Xdirty‖∗/‖Ψ†Xdirty‖2,1 = 10−2.
Similarly for Faceted HyperSARA, we set µc = 1 and

µc = ‖Xdirty
c ‖∗/‖Ψ†Xdirty

c ‖2,1 = 10−2.

4.2 Hardware

All the methods compared in this section have been run on
multiple compute nodes of Cirrus, one of the UK’s Tier2
HPC services4. Cirrus is an SGI ICE XA system composed
of 280 compute nodes, each with two 2.1 GHz, 18-core, Intel
Xeon E5-2695 (Broadwell) series processors. The compute
nodes have 256 GB of memory shared between the two pro-
cessors. The system has a single Infiniband FDR network
connecting nodes with a bandwidth of 54.5 GB/s.

The different methods have been applied in the follow-
ing setting. For all the experiments, SARA uses 12 CPU

4 https://epsrc.ukri.org/research/facilities/hpc/tier2/

https://epsrc.ukri.org/research/facilities/hpc/tier2/
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Channel ν20 = 2 GHz︷                                                                                              ︸︸                                                                                              ︷
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Figure 5. Spatial faceting analysis for synthetic data: reconstructed images (in Jy/pixel) reported in log10 scale for channels ν1 = 1
GHz (first two columns) and ν20 = 2 GHz (last two columns) for Faceted HyperSARA with Q = 16 and C = 1 (columns 1 and 3), and

HyperSARA (i.e. Faceted HyperSARA with Q = C = 1, in column 2 and 4). From top to bottom are reported the ground truth image,
the reconstructed and residual images. The overlap for the faceted nuclear norm regularization corresponds to 50% of the spatial size of

a facet. The non-overlapping tiles underlying the definition of the facets are delineated on the residual images in red dotted lines, with

the central facet displayed in continuous lines.

Time (h) aSNR (dB) aSNRlog (dB) CPU cores

SARA 5.89 32.78 (±2.76) -1.74 (±0.83) 240

HyperSARA 133.1 38.63 (±0.23) -0.39 (±0.95) 22

Faceted nuclear norm overlap (0%) 26.26 37.03 (±2.90 · 10−3) 5.09 (±1.09) 36

Faceted nuclear norm overlap (6%) 18.01 37.01 (±1.00 · 10−3) 4.09 (±0.99) 36

Faceted nuclear norm overlap (20%) 18.11 36.86 (±0.90 · 10−3) 4.51 (±1.07) 36

Faceted nuclear norm overlap (33%) 17.94 36.98 (±1.60 · 10−3) 6.00 (±1.05) 36

Faceted nuclear norm overlap (50%) 20.75 37.08 (±1.60 · 10−3) 7.88 (±0.91) 36

Table 2. Spatial faceting experiment: varying size of the overlap region for the faceted nuclear norm regularization. Reconstruction
performance of Faceted HyperSARA with Q = 16 and C = 1, compared to HyperSARA (i.e. Faceted HyperSARA with Q = C = 1) and

SARA. The results are reported in terms of reconstruction time, aSNR and aSNRlog (both in dB with the associated standard deviation),
and total number of CPU cores used to reconstruct the full image. The evolution of the aSNRlog, of specific interest for this experiment,
is highlighted in bold face.

cores to reconstruct each single channel, based on the paral-
lelization strategy proposed by Onose et al. (2016b): 1 mas-
ter CPU core, 2 CPU cores for the data-fidelity terms and 9
CPU cores to handle the average sparsity terms (associated
with the nine bases of the SARA dictionary). HyperSARA
and Faceted HyperSARA have been applied in the follow-
ing configuration, given the different number of visibilities
considered in the two simulation scenarios.

• Spatial faceting : HyperSARA addresses the full prob-
lem (3)-(5) with 22 CPU cores: 1 master CPU core, 20 CPU
cores for the data fidelity terms (1 CPU core per data term),
and 1 CPU core for the regularization term. To address each
sub-problem in (6), Faceted HyperSARA uses 20 CPU cores
for the data fidelity terms (1 CPU core per data channel),
and 1 CPU core for each of the Q facets. The master process
runs on one of the hyperthreads of the node (logical core)
to ensure communication synchronizations.
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Time (h) aSNR (dB) aSNRlog (dB) CPU cores

SARA 6.23 32.78 (±2.76) -1.74 (±0.83) 240
HyperSARA 133.08 38.63 (±0.23) -0.39 (±0.95) 22

Faceted HyperSARA (Q = 4) 42.04 36.58 (±1.80 · 10−3) 10.19 (±0.88) 24

Faceted HyperSARA (Q = 9) 21.60 37.00 (±1.70 · 10−3) 5.88 (±1.00) 29

Faceted HyperSARA (Q = 16) 17.94 37.08 (±1.60 · 10−3) 7.88 (±1.05) 36

Table 3. Spatial faceting experiment: varying number of facets along the spatial dimension Q. Reconstruction performance of Faceted

HyperSARA (C = 1, overlap of 50%), compared to HyperSARA (i.e. Faceted HyperSARA with Q = C = 1) and SARA. The results are

reported in terms of reconstruction time, aSNR and aSNRlog (both in dB with the associated standard deviation), and total number of
CPU cores used to reconstruct the full image. The evolution of the computing time, of specific interest for this experiment, is highlighted

in bold face.

• Spectral faceting : HyperSARA addresses the full prob-
lem (3)-(5) with 7 CPU cores: 1 master CPU core, 5 CPU
cores for the data fidelity terms (20 data-fidelity terms han-
dled by each core), and 1 CPU core for the regularization
term. To address each sub-problem in (6), Faceted Hyper-
SARA uses 1 master CPU core, 5 CPU cores for the data
fidelity terms, and 1 CPU core per facet (Q facets in total).

Note that for each experiment, the number of cores as-
signed to each group of cores in Faceted HyperSARA (i.e.
data and facet cores) has been chosen to ensure a reasonable
balance between the different computing tasks.

4.3 Evaluation metrics

Performance is evaluated in terms of global computing time
(elapsed real time) and reconstruction SNR, defined for each
channel l ∈ {1, . . . , L} as

SNRl(xl) = 20 log10

(
‖xl ‖2
‖xl − x‖2

)
.

Results are reported in terms of the average SNR (aSNR)

aSNR(X) = 1
L

L∑
l=1

SNRl(xl).

Since the above criterion shows limitations to reflect the dy-
namic range and thus appreciate improvements in the qual-
ity of faint emissions, the following criterion is computed
over images in log10 scale

SNRlog,l(xl) = 20 log10

( ‖log10(xl + ε1N )‖2
‖log10(xl + ε1N ) − log10(x + ε1N )‖2

)
,

where the log10 function is applied term-wise, and ε is an
arbitrarily small parameter to avoid numerical issues (ε is
set to machine precision). Results are similarly reported
in terms of the average log-SNR, defined as aSNRlog(X) =
1
L

∑L
l=1 SNRlog,l(xl).

4.4 Results and discussion

4.4.1 Spatial faceting

• Varying spatial overlap: The results reported in Table 2
show that spatial faceting gives a good reconstruction of high
intensity pixels (reflected by an aSNR close to HyperSARA).
Even if the performance of the proposed approach does not
vary much in terms of aSNR as the overlap for the faceted
nuclear norm increases, the aSNRlog improves significantly.

This reflects the ability of the proposed prior to enhance the
estimation of faint emissions and finer details by promoting
local correlations. This observation is further confirmed by
the reconstructed images, reported in Jy/pixel in Figure 5
for the channels ν1 = 1 GHz and νL = 2 GHz, showing that
Faceted HyperSARA reconstructs images with a higher dy-
namic range (see the zoomed region delineated in white in
Figure 5). The associated residual images (last row of Fig-
ure 5) are comparable to or better than HyperSARA. Note
that the regular patterns observed on the residual images do
not result from the faceting, as they are not aligned with the
facet borders and appear for both approaches. From a com-
putational point of view, Table 2 shows that increasing the
overlap size results in a moderate increase in the computing
time. Overall, an overlap of 50% gives the best reconstruc-
tion SNR for a reasonable computing time, and will thus
be considered as a default faceting setting for the real data
experiments reported in Sections 5 and 6.
• Varying number of facets Q along the spatial dimen-

sion: The reconstruction performance and computing time
reported in Table 3 show that Faceted HyperSARA gives
an almost constant reconstruction performance as the num-
ber of facets increases, for an overall computing time get-
ting closer to the SARA approach. The dynamic range of
the reconstructed images is notably higher for the Faceted
approach, as indicated by the aSNRlog values reported in
Table 3. These results confirm the potential of the proposed
approach to scale to large image sizes by increasing the num-
ber of facets along the spatial dimensions, while ensuring a
stable reconstruction level as the number of facets increases.
In particular, the setting Q = 16 is reported to ensure a
satisfactory reconstruction performance for a significantly
reduced computing time.

In both experiments, Faceted HyperSARA has a much
lower SNR standard deviation than HyperSARA and SARA
(see Tables 2 and 3), i.e. ensures a more stable recovery qual-
ity across channels. This results from the stronger spatio-
spectral correlations induced by the proposed faceted reg-
ularization, in comparison with both the HyperSARA and
SARA priors.

4.4.2 Spectral faceting

The results reported in Table 4 show that Faceted Hyper-
SARA using channel-interleaved facets retains most of the
overall reconstruction performance of HyperSARA, ensur-
ing a reconstruction quality significantly better than SARA.
As expected, the reconstruction quality of faint emissions,
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reflected by the aSNRlog values, gradually decreases as fewer
channels are involved in each facet (i.e. as C increases).
This observation is qualitatively confirmed by the images
reported in Figure 6 (in Jy/pixel) for facets composed of
10 channels each (see the zoomed regions in Figure 6). The
slight loss of dynamic range is likely due to the reduction in
the amount of data per spectral sub-cube. Spectral faceting
remains however computationally attractive, in that it pre-
serves the overall imaging quality of HyperSARA up to an
already significant amount of interleaving (see discussion
in Section 2.4.1), while allowing lower-dimension wide-band
imaging sub-problems to be considered (see discussion in
Section 2.4). This strategy offers an increased scalability
potential to Faceted HyperSARA over HyperSARA, which
may reveal of significant interest in extreme dimension.

5 VALIDATION ON REAL DATA

In this section, we illustrate both the precision and scala-
bility potential of Faceted HyperSARA through the recon-
struction of a 15 GB image cube of Cyg A from 7.4 GB
of VLA data. The algorithm is mapped on 496 CPU cores
on a high performance computing system, achieving a Ter-
aFLOPS proof of concept. The performance of the proposed
approach is evaluated in comparison with the monochro-
matic imaging approach SARA (Onose et al. 2017) and the
CLEAN-based wide-band imaging algorithm JC-CLEAN in
the software WSCLEAN (Offringa & Smirnov 2017). Note
that HyperSARA (Abdulaziz et al. 2019b) is not considered
in this study due to its prohibitive cost.

5.1 Dataset description and imaging settings

The data analyzed in this section are part of wide-band
VLA observations of the celebrated radio galaxy Cyg A,
acquired over two years (2015-2016) within the frequency
range 2–18 GHz. We consider 480 channels in C band span-
ning the frequency range [ν1, ν480] = [3.979, 8.019] GHz,
with a frequency step δν = 8 MHz and a total bandwidth
of 4.04 GHz. Observations phase center is at the position
RA = 19h 59mn 28.356s (J2000) and DEC = +40◦ 44′ 2.07′′.
The dataset was acquired at four instances which corre-
spond to the frequency ranges [ν1, ν256] = [3.979, 6.019] GHz
and [ν257, ν480] = [5.979, 8.019] GHz, and VLA configura-
tions A and C. The wideband data consists of 30 spectral
windows (each spanning 128 MHz), composed of 16 chan-
nels each, with approximately 106 complex visibilities per
channel (about 8× 105 and 2× 105 measurements for config-
urations A and C, respectively), stored as double precision
complex numbers.

In order to improve the accuracy of the modeled mea-
surement operator, a pre-processing step has been con-
ducted. It consists in a joint DDE calibration and imaging,
applied to each channel separately. The approach, originally
proposed by Repetti et al. (2017), consists in the alternate
estimation of the unknown DDEs and the image of inter-
est, with a spatio-temporal smoothness DDE prior and an
average sparsity image prior (Repetti et al. 2017; Repetti
& Wiaux 2017; Thouvenin et al. 2018). The underpinning
algorithmic structure offers convergence guarantees to a crit-
ical point of the global non-convex optimization problem for

joint calibration and imaging and the approach was sug-
gested to open the door to a significant improvement over
the state-of-the-art (Repetti et al. 2017). Note that, one
would ultimately want to resort to such a joint calibration
and imaging approach to reconstruct the final wide-band
image cube (Dabbech et al. 2019), rather than applying it
as a pre-processing step on each channel separately. How-
ever, the underpinning algorithmic structure does not en-
able a faceting approach as the one proposed here, thereby
severely limiting its scalability. We thus restrict ourselves
to using this approach separately on each channel for scal-
ability, and essentially to estimate DDEs. These are easily
integrated into the forward model (1), as explained in Sec-
tion 2. The estimated model visibilities are also exploited
to determine estimates of the noise statistics, thus defining
the `2 constraints in the minimization problem (3). Note
that both SARA and Faceted HyperSARA take advantage
of this pre-processing step, in contrast with JC-CLEAN, as
the antenna-based DDEs estimates cannot be incorporated
into WSCLEAN.

From the wide-band data acquired at L = 480 chan-
nels, we consider imaging the field-of-view (FoV) Ω0 =
2.56′ × 1.536′ at the spatial resolution given by the pixel
size δx = 0.06′′ (in both directions), corresponding to the
spatial dimension N = 2560 × 1536. The imaged cube is of
size 2560 × 1536 × 480. Note that the selected pixel size is
such that the spatial bandwidth of the recovered signal is up
to 1.75 times the nominal resolution at the highest channel
νL = 8.019 GHz, and 3.53 times the nominal resolution at the
lowest channel ν1 = 3.979 GHz. For both SARA and Faceted
HyperSARA, B = 2 data blocks are considered per channel.
The data blocks are associated with VLA configurations A
and C, presenting different noise statistics. More specifically
to Faceted HyperSARA, C = 16 channel-interleaved sub-
problems are considered, with Lc = 30, for all c ∈ {1, . . . ,C},
and Q = 5 × 3 facets along the spatial dimension, resulting
in a total of Q × C = 240 spatio-spectral facets.

Concerning the initialization, both SARA and Faceted
HyperSARA are initialized with the wide-band model cube

X(0) = (X(0)c )1≤c≤C , obtained by the monochromatic joint
calibration and imaging pre-processing step. From now on,
for all (c, l) ∈ {1, . . . ,C} × {1, . . . , Lc}, the gridding matri-
ces Gc,l include the estimated DDEs, and Φc,l refers to
the resulting measurement operator. The `2 bounds defin-
ing the data-fidelity constraints in (3) are approximated as
follows. For each data block indexed by (c, l, b) ∈ {1, . . . ,C} ×
{1, . . . , Lc} × {1, . . . , B}, we set εc,l,b = ‖yc,l,b − Φc,l,bx(0)

c,l
‖2.

More specifically to Faceted HyperSARA, the weights, which
are defined in (10) and (11) and involved in the reweighting
scheme (Algorithm 1), are initialized from the image cube
X(0). The regularization parameters µc and µc are set as

µc = 1/‖X(0)c ‖∗ = 10−2 and µc = 10−2/‖Ψ†X(0)c ‖2,1 = 5 × 10−6.

The rescaling by 1/‖X(0)c ‖∗ with respect to the values pro-
posed in Section 4 theoretically does not affect the minimiz-
ers of the objective, but was empirically shown to optimize
convergence. Finally, the SARA regularization parameter µ̃
is fixed to µ̃ = 5 × 10−6.
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Time (h) aSNR aSNRlog CPU cores

0.19 25.04 (±4.06) -6.28 (±0.60) 120
HyperSARA 14.83 31.74(±1.31) -1.24 (±0.57) 7

Faceted HyperSARA (C = 16, Lc ≈ 6) 1.31 31.05 (±0.98) -3.54 (±1.37) 112

Faceted HyperSARA (C = 10, Lc = 10) 1.87 31.48 (±0.82) -3.26 (±1.43) 70
Faceted HyperSARA (C = 7, Lc ≈ 14) 2.36 31.68 (±0.90) -2.90 (±1.38) 49

Faceted HyperSARA (C = 5, Lc = 20) 3.31 31.84 (±0.92) -2.33 (±0.91) 35

Faceted HyperSARA (C = 3, Lc ≈ 33) 5.10 32.00 (±1.04) -2.33 (±1.07) 21
Faceted HyperSARA (C = 2, Lc = 50) 7.56 31.97 (±1.08) -1.63 (±0.64) 14

Table 4. Spectral faceting experiment: reconstruction performance of Faceted HyperSARA with a varying number of spectral sub-

problems C and Q = 1, compared to HyperSARA (i.e. Faceted HyperSARA with Q = C = 1) and SARA. The results are reported in
terms of reconstruction time, aSNR and aSNRlog (both in dB with the associated standard deviation) and total number of CPU cores.

The reconstruction performance of Faceted HyperSARA, specifically investigated in this experiment, is highlighted in bold face.
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Channel ν100 = 2 GHz︷                                                                                              ︸︸                                                                                              ︷
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Figure 6. Spectral faceting analysis for synthetic data: reconstructed images (in Jy/pixel) reported in log10 scale for channels ν1 = 1
GHz (first two columns) and ν100 = 2 GHz (last two columns) with Faceted HyperSARA for C = 10 and Q = 1 (columns 1 and 3) and

HyperSARA (i.e. Faceted HyperSARA with Q = C = 1, in columns 2 and 4). Each sub-cube is composed of 10 out of the L = 100
channels. From top to bottom: ground truth image, estimated model images and residual images.

5.2 Hardware

All the methods investigated in this section have been run
on multiple nodes of Cirrus, having 36 cores and 256 GB of
memory each (see Section 4 for further details). JC-CLEAN
was run with 36 CPU cores assigned to each sub-problem.
SARA was applied based on the parallelization procedure
proposed by Onose et al. (2016b). More precisely, each chan-
nel is reconstructed using 12 CPU cores: 1 master CPU
core, 2 CPU cores for the data-fidelity terms (one core per
data-fidelity term) and 9 CPU cores to handle the average
sparsity terms (associated with the nine bases of the SARA

dictionary). Finally, each sub-problem (6) (composed of 30
channels) is solved with Faceted HyperSARA using 1 mas-
ter CPU core, 15 CPU cores to process the 2 × 30 data-
fidelity terms (4 data-fidelity blocks handled per core), and
15 CPU cores to handle the 15 spatio-spectral facets. We re-
call that SARA and Faceted HyperSARA are implemented
using MATLAB whilst JC-CLEAN is implemented in C++.
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5.3 Evaluation metrics

Imaging precision of the proposed approach is evaluated
via the visual inspection of the reconstructed images, in
comparison with the benchmark methods SARA and JC-
CLEAN. For Faceted HyperSARA and SARA, we consider
the examination of the estimated model cube X and the
naturally-weighted residual image cube R whose columns,
indexed by l ∈ {1, . . . , L}, are given by rl = ηlΦ†l (yl −Φlxl),
where yl are the naturally-weighted RI measurements. Let
δ ∈ RN denote an image with value 1 at the phase cen-
ter and zero elsewhere. The normalization factor ηl is such
that the channel-associated point spread function (PSF),

given by ηlΦ
†
l
Φlδ, has a peak value equal to 1. In con-

trast with SARA and Faceted HyperSARA, for which natu-
ral weighting is adopted, optimal results for JC-CLEAN are
obtained with Briggs weighting (Briggs 1995). JC-CLEAN
examined images are the restored image cube T = (tl)1≤l≤L
and Briggs-weighted residual cube R̃ = (̃rl)1≤l≤L . We re-
call that the columns of the restored image cube, indexed
by l ∈ {1, . . . , L}, are defined as tl = xl ∗ cl + r̃l , where xl
is the estimated model image (consisting of the CLEAN
components) and cl is the CLEAN beam (typically a Gaus-
sian fitted to the primary lobe of the associated PSF). As
a quantitative metric of fidelity to data, the average stan-
dard deviation (aSTD) is reported for the three residual im-
age cubes, and is defined for an image cube Z ∈ RN×L as
aSTD(Z) = 1

L

∑L
l=1 STDl(zl), where STDl(zl) is the standard

deviation of the image zl ∈ RN at a given channel νl . Finally,
scalability of the different approaches is assessed through
their computing time (elapsed time), resources (number of
CPU cores) and overall computing cost.

5.4 Results and discussion

5.4.1 Imaging quality

To assess the reconstruction quality, we first examine the
estimated images of channels ν1 = 3.979 GHz and ν480 =
8.019 GHz, displayed in Figures 7 and 8, respectively. Note
that these channels correspond to the respective channel
indexes 1 and 30 of sub-problems 1 and 16. Average im-
ages of the estimated cubes, computed as the mean along
the spectral dimension, are also examined and provided in
Figure 9. From top to bottom are displayed in log10 scale
the model images of Faceted HyperSARA and SARA, and
the restored images of JC-CLEAN. These images are over-
laid with zooms on selected key regions of the radio galaxy.
These are (i) the west hotspot (top left, left panel) over
the angular area Ω1 = 0.08′ × 0.08′, centered at the posi-
tion given by RA = 19h 59mn 33.006s (J2000) and DEC =
+40◦ 43′ 40.889′′ and (ii) the inner core of Cyg A (top left,
right panel) over the angular area Ω2 = 0.03′ × 0.03′, cen-
tered at the position RA = 19h 59mn 28.345s (J2000) and
DEC = +40◦ 44′ 2.015′′. Note that the scale ranges of the
displayed zooms are adapted to ensure a clear visualization
of the contrast within the different structures of Cyg A.

In general, a visual inspection of the reconstructed im-
ages displayed in Figures 7 and 8 indicates superior imag-
ing quality of Faceted HyperSARA model images, compared
to the model images of SARA and the restored images of
JC-CLEAN, with SARA imaging quality outperforming JC-

CLEAN. On the one hand, the higher resolution of Faceted
HyperSARA is reflected by a better reconstruction of the
hotspots and the inner core of Cyg A, in particular at the
low-frequency channels (see Figure 7, first row, top left
zooms). On the other hand, its higher dynamic range is
reflected by the enhanced estimation of faint emissions in
Cyg A, in particular, structures whose surface brightness is
within the range [0.01,0.1] mJy (see the arc around the right
end of the west jet in Figure 8, first row). We further observe
that the proposed spatial tessellation does not introduce ar-
tifacts in the estimated images over the large dynamic range
of interest. For SARA, given that no spectral correlation is
promoted, the reconstruction quality of the different chan-
nels is restricted to their inherent resolution and sensitivity.
This explains the lower reconstruction quality of SARA in
comparison with Faceted HyperSARA. JC-CLEAN restored
images exhibit a comparatively poorer reconstruction qual-
ity, which is likely to be attributed to both the much simpler
regularization enforced, and the greedy nature of the algo-
rithm. They are also limited to the instrument’s resolution
(through convolutions with the channel-associated synthe-
sized CLEAN beams). The associated dynamic range is also
limited by the prominent artifacts resulting from the lack
of DDE calibration. The inspection of the average images
displayed in Figure 9 confirms the ability of the proposed
approach to recover fine details of Cyg A in comparison with
SARA. Notice the faint emissions within the surface bright-
ness range [0.01,0.1] mJy arising in the average JC-CLEAN
restored image as opposed to the channel-specific restored
images in Figures 7–8. This validates the different structures
recovered by both Faceted HyperSARA and SARA across all
channels, thanks to their accurate measurement operators.

Naturally-weighted residual images obtained with
Faceted HyperSARA and SARA, and Briggs-weighted resid-
ual images obtained with JC-CLEAN are reported in Fig-
ures 7–9, displayed on bottom right panels overlaying the
full recovered images, in linear scale. Their respective aSTD
values are 5.46 × 10−4, 4.53 × 10−4 and 5, 2 × 10−4, indicating
a comparable fidelity to data. Yet, a visual inspection of the
residual images, in particular for the average residual im-
ages (Figure 9, bottom right panels), indicates that details
of Cyg A jets are not fully recovered by SARA, as opposed
to Faceted HyperSARA. Given that both approaches satisfy
the same data constraints, this demonstrates the efficiency of
the Faceted HyperSARA prior to capture the details of the
galaxy. Although no DDE solutions are incorporated into the
forward-modelling of JC-CLEAN, its residuals are homoge-
neous due to the absence of the non-negativity constraint. In
fact, negative components are absorbed in its model images
to compensate for spurious positive components.

The examination of the full image cubes provided by the
three methods, available online (Thouvenin et al. 2020), con-
firms our analysis of the imaging quality offered by Faceted
HyperSARA, SARA, and JC-CLEAN. The general shape of
the spectra of the different emissions in Cyg A are consis-
tent continuum emission following a typical power-law de-
cay. Even though a spectral index map can be directly in-
ferred from the reconstructed images, such an analysis lies
beyond the scope of the present work. We also note a promi-
nent spectral discontinuity at channel ν257 = 5.979 GHz,
particularly noticeable for emissions with surface bright-
ness above 1 mJy (e.g. see the inner core of Cyg A).
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Figure 7. (Compressed images inserted due to size constraints. These exhibit very light compression artifacts such

as loss of color contrast and blocking artifacts visible on full zoom. See researchportal.hw.ac.uk ID 25219759 for the
full article with uncompressed images.) Cyg A imaged at the spectral resolution 8 MHz from 7.4 GB of data. Imaging results of

channel ν1 = 3.979 GHz. Estimated images at the angular resolution 0.06′′ (3.53 times the associated sensed spatial bandwidth). From
top to bottom: the respective estimated model images of Faceted HyperSARA (Q = 15, C = 16) and SARA, both in units of Jy/pixel,
and restored image of JC-CLEAN in units of Jy/beam. The associated synthesized beam is of size 0.37′′ × 0.35′′ and its flux is 42.18 Jy.

The full FoV images (log10 scale) are overlaid with the residual images (bottom right, linear scale) and zooms on selected regions in
Cyg A (top left, log10 scale). These correspond to the west hotspot (left) and the inner core of Cyg A (right). The zoomed regions are
displayed with different value ranges for contrast visualization purposes and highlighted with white boxes in the full images. Cyg A-2

location is highlighted with a white dashed circle. Negative pixel values of JC-CLEAN restored image and associated zooms are set to 0
for visualization purposes. Full image cubes are available online (Thouvenin et al. 2020).

https://researchportal.hw.ac.uk/en/publications/parallel-faceted-imaging-in-radio-interferometry-via-proximal-spl
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Figure 8. (Compressed images inserted due to size constraints. These exhibit very light compression artifacts such as

loss of color contrast and blocking artifacts visible on full zoom. See researchportal.hw.ac.uk ID 25219759 for the full
article with uncompressed images.) Cyg A imaged at the spectral resolution 8 MHz from 7.4 GB of data. Reconstruction results of

channel ν480 = 8.019 GHz. Estimated images at the angular resolution 0.06′′ (1.75 times the associated sensed spatial bandwidth). From
top to bottom: the respective estimated model images of Faceted HyperSARA (Q = 15, C = 16) and SARA, both in units of Jy/pixel,
and restored image of JC-CLEAN in units of Jy/beam. The associated synthesized beam is of size 0.17′′ × 0.15′′ and its flux is 8.32 Jy.

The full FoV images (log10 scale) are overlaid with the residual images (bottom right, linear scale) and zooms on selected regions in
Cyg A (top left, log10 scale). These correspond to the west hotspot (left) and the inner core of Cyg A (right). The zoomed regions are
displayed with different value ranges for contrast visualization purposes and highlighted with white boxes in the full images. Cyg A-2

location is highlighted with a white dashed circle. Negative pixel values of JC-CLEAN restored image and associated zooms are set to 0
for visualization purposes. Full image cubes are available online (Thouvenin et al. 2020).

https://researchportal.hw.ac.uk/en/publications/parallel-faceted-imaging-in-radio-interferometry-via-proximal-spl
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Figure 9. (Compressed images inserted due to size constraints. These exhibit very light compression artifacts such as

loss of color contrast and blocking artifacts visible on full zoom. See researchportal.hw.ac.uk ID 25219759 for the full
article with uncompressed images.) Cyg A imaged at the spectral resolution 8 MHz from 7.4 GB of data. Average estimated images,

computed as the mean along the spectral dimension. From top to bottom: the respective estimated average model images of Faceted
HyperSARA (Q = 15, C = 16) and SARA, and the average restored image of JC-CLEAN (obtained as the mean of the restored images
normalized by the flux of their associated synthesized beam). The full FoV images (log10 scale) are overlaid with the residual images

(bottom right, linear scale) and zooms on selected regions in Cyg A (top left, log10 scale). These correspond to the west hotspot (left)
and the inner core of Cyg A (right). The zoomed regions are displayed with different value ranges for contrast visualization purposes
and highlighted with white boxes in the full images. Cyg A-2 location is highlighted with a white dashed circle. Negative pixel values of

JC-CLEAN restored image and associated zooms are set to 0 for visualization purposes.

https://researchportal.hw.ac.uk/en/publications/parallel-faceted-imaging-in-radio-interferometry-via-proximal-spl
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Time (h) CPU cores CPU time (h)

Faceted HyperSARA 68 496 33728
SARA 12.5 5760 72000

JC-CLEAN 22 576 12672

Table 5. Computing cost of Cyg A imaging at the spectral resolu-
tion 8 MHz from 7.4 GB of data. Results are reported for Faceted

HyperSARA, SARA, and JC-CLEAN in terms of reconstruction

time, number of CPU cores and overall CPU time (highlighted in
bold face).

Since the dataset has been acquired separately in the fre-
quency ranges [ν1, ν256] = [3.979, 6.019] GHz and [ν257, νL] =
[5.979, 8.019] GHz, the spectral discontinuity is most likely
due to the different calibration errors and noise statistics
of the two frequency ranges. We further notice small-scale
spectral discontinuities, demarcating the spectral windows,
which again are most likely to be attributed to calibration
errors.

Recently, Perley et al. (2017) have reported the pres-
ence of a bright object in the inner core of the galaxy with
a flux value reaching 0.5 mJy at the frequency 8.422 GHz.
The object, dubbed Cyg A-2, has been identified as a sec-
ond black hole. Its location is highlighted with a white
dashed circle in Figures 7–9 (top left, right panel), centered
at the position given by RA = 19h 59mn 28.322s (J2000)
and DEC = +40◦ 44′ 1.89′′ with a radius of size 0.1′′. The
discovery was further confirmed in Dabbech et al. (2018)
by imaging two monochromatic VLA data sets at C band
(6.678 GHz) and X band (8.422 GHz) with SARA. Interest-
ingly, the inspection of Faceted HyperSARA estimated im-
age cube shows that Cyg A-2 is discernible at frequencies
lower than ever. More precisely, the source is resolved in all
channels within the range [5.979,8.019] GHz with an average
flux value of 0.5164 (±0.1394)mJy. SARA, however, succeeds
in detecting it within the range [7.131,8.019] GHz with an
average flux value of 0.5157 (±0.3957) mJy. Given the im-
portant calibration errors present in the associated restored
images, JC-CLEAN is not able to resolve Cyg A-2.

5.4.2 Computing cost

The computing time and resources required by the different
methods, corresponding to the hardware resource allocation
described in Section 5.2, are reported in Table 5. In this set-
ting, JC-CLEAN required 12672 CPU hours, whereas SARA
leveraged 72000 CPU hours. Finally, Faceted HyperSARA
required 33728 CPU hours. These numbers indicate an over-
all higher efficiency of the parallelization procedure adopted
for Faceted HyperSARA when compared to the one taken
for SARA.

Interestingly, the computing cost of Faceted Hyper-
SARA, implemented in MATLAB, is not far from the JC-
CLEAN C++ implementation. This gap can be reduced, if
not closed, with a C++ implementation of Faceted Hyper-
SARA. It is worth noting that the reported numbers are sen-
sitive to the number of CPU cores allocated for each method.

6 COMBINATION WITH DIMENSIONALITY
REDUCTION

In the previous section, spectral faceting has been leveraged
to divide the imaging problem into smaller, independent sub-
problems to form an image of Cyg A at the full spectral
resolution of the data. The reconstructions confirm a rel-
atively flat spectrum, suggesting that the image could be
formed at a much coarser spectral resolution without vio-
lating the Nyquist limit. This motivates a reduction of the
image dimension. In this context, the amount of data per
effective channel increases significantly. Following the recent
work of Kartik et al. (2017), the data of each effective chan-
nel can be embedded into a lower dimensional sub-space to
reduce the data volume. Such a joint image and data di-
mensionality reduction (DR) represents a significant poten-
tial for reducing both memory requirements and computing
cost to form RI image cubes. This section illustrates how
applying Faceted HyperSARA to a lower-dimension inverse
imaging problem resulting from joint image and data DR can
enable handling large wide-band visibility volumes, thereby
boosting the scalability of the image formation process.

6.1 Image DR

In light of the reconstruction results obtained at the obser-
vations spectral resolution δν = 8 MHz and presented in Sec-
tion 5.4, we consider herein a coarse spectral sampling that
is given by the spectral resolution δ̂ν = 128 MHz by binning
every 16 consecutive channels – constituting a spectral win-
dow – into one effective channel. By doing so, the total num-
ber of effective channels is L̂ = 30. Furthermore, the number
of data points per effective channel rises to M̂l = 1.6 × 107

approximately, larger than the associated effective channel
image size N = 2560 × 1536 (assuming the imaged FoV and
spatial resolution considered in Section 5.1). In this setting,
further reduction of the data volume per effective channel
can be of high interest to lower memory requirements and
computing cost for image reconstruction while preserving
the overall reconstruction quality.

6.2 Data DR

Various data DR techniques have been studied by Kartik
et al. (2017) in the context of single-channel imaging. In
particular, data DR considered herein effectively relies on
visibility gridding. In what follows, data DR is described in
the context of Faceted HyperSARA.

Considering C independent interleaved sub-problems,
let (c, l, b) ∈ {1, . . . ,C} × {1, . . . , Lc} × {1, . . . , B} denote the
index of a data block consisting of M̂c,l,b data points. The
new forward model in the DR setting reads as

y′c,l,b = Φ
′
c,l,bxl + n′c,l,b, (13)

with the reduced data and noise vectors y′
c,l,b
∈ CM̂

′
c, l,b and

n′
c,l,b
∈ CM̂

′
c, l,b , respectively, and the measurement operator

Φ′
c,l,b
∈ CM̂

′
c, l,b
×N

, where the reduced data dimension M̂ ′
c,l,b

is much smaller than both the original data dimension M̂c,l,b

and the image dimension N. DR is achieved by applying

a linear embedding operator Γc,l,b ∈ C
M̂′

c, l,b
×M̂c, l,b to the
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data, leading to y′
c,l,b

= Γc,l,byc,l,b, n′
c,l,b

= Γc,l,bnc,l,b, and

Φ′
c,l,b

= Γc,l,bΦc,l,b. The specific DR operator considered

here reads as

Γc,l,b = Ξc,l,bΛc,l,bG†
c,l,b
Θ†
c,l,b

, (14)

where Λc,l,b ∈ {0, 1}
M̂′

c, l,b
×K

is a selection operator, and the

diagonal matrix Ξc,l,b ∈ R
M̂′

c, l,b
×M̂′

c, l,b is a noise-whitening
operator. The measurement operator Φ′

c,l,b
can be reformu-

lated as

Φ′c,l,b = Ξc,l,bΛc,l,bHc,l,bFZ, (15)

where the holographic matrix Hc,l,b ∈ CK×K is given by

Hc,l,b = G†
c,l,b
Θ†
c,l,b
Θc,l,bGc,l,b .

Having introduced the holographic matrix Hc,l,b, further de-
tails of the different matrices involved in the embedding op-
erator Γc,l,b can now be provided. On the one hand, the se-
lection matrix Λc,l,b acts on the holographic matrix Hc,l,b,
such that the retained rows are associated with the elements
of Diag(Hc,l,b) with the largest amplitude values and con-
tributing to a percentage P of ‖ Diag(Hc,l,b)‖1. Note that
the larger the number of visibilities clustered in a reduced
amount of Fourier cells, the more significant the reduction of
dimension, i.e. the smaller the ratio between each data block
size M̂ ′

c,l,b
and N. On the other hand, the diagonal of the

matrix Ξc,l,b is given by the vector (Diag(Λc,l,bHc,l,b))−
1
2 .

This form of weighting ensures that the noise affecting the
embedded data vector y′

c,l,b
is, identically distributed. Yet,

it does not remove the noise correlation introduced by the
gridding operation itself, i.e. the noise is not formally white.

The gist of data DR resides in the fact that, the final
embedded data size is M̂ ′

c,l,b
� N, and the measurement

operators Φ′
c,l,b

become blind to the original data dimension

M̂c,l,b thanks to the interplay of the precomputed (reduced
and weighted) holographic matrices Ξc,l,bΛc,l,bHc,l,b of size

M̂ ′
c,l,b
× K. Given the original sparse nature of Gc,l,b, the

holographic matrices can be efficiently encoded as sparse
matrices.

The updated forward model (13) can be substituted to
the original model and solved efficiently using Algorithms 1
and 2, replacing the initial measurement operators Φc,l,b,
data vectors yc,l,b and the `2 bounds εc,l,b by the reduced
measurement operators Φ′

c,l,b
, the embedded data vectors

y′
c,l,b

and updated `2 bounds ε′
c,l,b

, respectively. Note that,

despite the correlated nature of the noise affecting the re-
duced data induced by visibility gridding, Kartik et al.
(2017) report that imposing data-fidelity through `2 con-
straints, which emanate from the assumption of white Gaus-
sian noise, does not affect the reconstruction quality.

6.3 DR and imaging settings

Similarly to Section 5.1, the imaged FoV is Ω0 = 2.56′ ×
1.536′, with spatial resolution given by the pixel size δx =
0.06′′ (in both directions) resulting in the spatial dimension
N = 2560×1536. In the context of image DR, the considered
spectral resolution of the imaged cube is δ̂ν = 128 MHz, re-
sulting in L̂ = 30 effective channels. The image cube is of

size 2560× 1536× 30, that is a 16-fold reduction from 15 GB
down to 0.94 GB. On a further note, the spatial bandwidth
of the recovered signal is up to 1.76 times the nominal res-
olution at the highest effective channel ν̂30 = 7.959 GHz,
and 3.48 times the nominal resolution at the lowest effective
channel ν̂1 = 4.039 GHz. For both SARA and Faceted Hyper-
SARA, we consider B = 2 data blocks per effective channel
(associated with VLA configurations). More specifically to
Faceted HyperSARA, given the important reduction in the
spectral dimension, only one spectral problem is considered,
(i.e. C = 1, and LC = L̂ = 30). Therefore, the index c will be
omitted in the following paragraphs from data-block vectors
and their associated operators. JC-CLEAN is systematically
applied to the binned data, described in Section 6.1. In the
context of data DR, we found that the threshold percent-
age P = 85% yields a reasonable compromise between the
image reconstruction quality and the size of the resulting
imaging problem. In fact, the data, initially composed of
4.65× 108 points, are reduced down to 1.4×107 points. That
is a 33-fold reduction in data volume from 7.4 GB down
to 0.22 GB. This process also yields a significant decrease in
memory requirements, reduced from 2.5 TB required to store
the initial gridding matrices (Gl,b)(1,1)≤(l,b)≤(L̂,B), down to

220 GB required to store the reduced holographic matrices
(Λl,bHl,b)(1,1)≤(l,b)≤(L̂,B), that is a 11-fold reduction in mem-

ory requirements. Note that data DR is applied to the mea-
surement operators encapsulating the estimated DDEs, ob-
tained with the pre-processing step described in Section 5.1.

Concerning imaging initialization, both Faceted Hyper-
SARA and SARA exploit the image cube estimated via the
monochromatic joint calibration and imaging pre-processing
step as follows. For each effective channel l ∈ {1, . . . , L̂},
the associated initial image x̂(0)

l
is taken as the average im-

age over the associated spectral window. In Faceted Hyper-
SARA, Q = 5 × 3 facets along the spatial dimension are
considered, leading to a total of Q × C = 15 spatio-spectral
facets. Data constraints are defined such that, for each data
block indexed by (l, b) ∈ {1, . . . , L̂}×{1, . . . , B}, the associated

`2 bound is estimated as ε′
l,b
= ‖y′

l,b
−Φ′

l,b
x̂(0)
l
‖2. For optimal

convergence, the regularization parameters µ1 and µ1 are set

as µ1 = 0.15/‖X(0)c ‖∗ = 10−2 and µ1 = 4 × 10−3/‖Ψ†X(0)c ‖2,1 =
5 × 10−6, similarly to Section 5.1. Finally, the SARA regu-
larization parameter µ̃ is fixed to µ̃ = 5 × 10−6.

6.4 Hardware

Despite the drastic reduction enabled by DR, memory re-
quirements of Faceted HyperSARA exceed the memory
available on a single node of the Cirrus system used in Sec-
tion 5. Therefore, we conducted DR experiments on a dif-
ferent HPC system, whose nodes have 2 Intel Casade Lake
8260M processors, each with 24 cores running at 2.4 GHz.
The nodes, equipped with 192 GB main memory and 3 TB
of Intel DCPMM, were used in Memory Mode: the 192 GB
main memory were used as a cache, and the 3 TB persistent
memory were exploited by the algorithm. Note that Faceted
HyperSARA required around 300 GB of memory for this
experiment.

The different methods were compared in the following
setting. JC-CLEAN used 36 cores to form the 30 effective
channels from the full dataset. As for SARA, each effective
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channel was reconstructed using 12 CPU cores: 1 master
CPU core, 2 CPU cores for the data-fidelity terms (one core
per data block) and 9 CPU cores for the average sparsity
(associated to the 9 bases of the SARA dictionary). Finally,
Faceted HyperSARA was deployed on 31 CPU cores, includ-
ing 1 master CPU core and two groups of 15 CPU cores han-
dling 15 spatial facets and 15 data-fidelity terms (one core
for two effective channels, i.e. 4 data blocks), respectively.

6.5 Evaluation metrics

The performance of Faceted HyperSARA is studied in com-
parison with SARA and JC-CLEAN. For imaging quality
assessment, we examine the estimated model image cubes
X̂ obtained by Faceted HyperSARA and SARA and the re-
stored image cube T̂ obtained by JC-CLEAN. Data-fidelity
is assessed through the visual inspection of the associated
residual image cubes, described in what follows. For both
SARA and Faceted HyperSARA, and for a given chan-
nel l ∈ {1, . . . , L̂}, the associated residual image is r′

l
=

η′
l
(Φ′

l
)†(y′ −Φ′

l
x̂l). Let δ ∈ RN denote an image with value 1

at the phase center and zero elsewhere. The normalization
factor η′

l
is such that the channel-associated PSF, given by

η′
l
= Φ′†

l
Φ′

l
δ, has a peak value equal to 1. As for JC-CLEAN,

similarly to Section 5.3, Briggs weighting is adopted for op-
timal results. Therefore, associated Briggs-weighted resid-
ual image cube is examined. Data-fidelity is also assessed in
terms of the aSTD metric defined in Section 5.3. Finally, the
scalability potential of the different methods in the context
of DR is provided.

6.6 Results and discussion

6.6.1 Imaging quality

The estimated images associated with the low-frequency
channel ν̂1 = 4.039 GHz and high-frequency channel ν̂30 =
7.959 GHz are respectively reported in Figures 10 and 11.
The average of the estimated images are also reported in
Figure 12. From top to bottom are displayed the images
obtained by Faceted HyperSARA, SARA and JC-CLEAN.
Each image is overlaid with zooms on the west hotspot (top
left, left panel), and the inner core of Cyg A (top left, right
panel), defined over the respective angular areas Ω1 and Ω2,
detailed in Section 5.4.

When comparing SARA and Faceted HyperSARA, one
can observe that the latter exhibits better reconstruction
quality in terms of resolution and dynamic range, owing to
its sophisticated wide-band underlying prior. Notice the re-
solved details of the jets and the west hotspot displayed in
Figure 10. In agreement with the observations made in Sec-
tion 5, JC-CLEAN reconstruction quality is comparatively
poorer, and of lower resolution, due to the simpler regu-
larization approach. The associated dynamic range is fur-
ther limited by strong artifacts resulting from the lack of
DDE calibration. Importantly, the images obtained by both
Faceted HyperSARA and SARA preserve well the overall re-
construction quality reported in Section 5.4 in the absence
of DR. To some extent, one can even notice a better reso-
lution at specific regions, such as filaments and jets in both
Faceted HyperSARA and SARA in the DR context.

Time (h) CPU cores CPU time (h)

Faceted HyperSARA 142 31 4402
SARA 10 360 3600

JC-CLEAN 36 36 1296

Table 6. Computing cost of Cyg A imaging in the context of
DR at the spectral resolution 128 MHz. Results are reported for

Faceted HyperSARA with DR, SARA with DR and JC-CLEAN

in terms of reconstruction time, total number of CPU cores and
overall CPU time (highlighted in bold face).

The naturally-weighted residual images at the scruti-
nized channels and the average residual images obtained by
Faceted HyperSARA, SARA and JC-CLEAN are displayed
in the bottom right panels overlaying the associated esti-
mated images in Figures 10–12. The respective aSTD values
are 4.12 × 10−4, 2.20 × 10−4 and 5.88 × 10−4. These values
are in agreement with the ones reported in Section 5.4. De-
spite lower aSTD value obtained by SARA in comparison
with Faceted HyperSARA, one can clearly see from the av-
erage residual images displayed in Figure 12, details left on
the jets locations in the average residual image of SARA
as opposed to Faceted HyperSARA. The residuals of both
methods also exhibit less structure than the corresponding
method in Section 5.4. JC-CLEAN average Briggs-weighted
residual image also exhibits significant details left on the
location of the jets.

The general examination of the full reconstructed im-
age cubes, available online (Thouvenin et al. 2020), con-
firms our analysis of the imaging quality offered by Faceted
HyperSARA, SARA, and JC-CLEAN. In the present DR
setting with a single effective channel per spectral window,
the cubes exhibit smooth spectra (i.e. free from the small
spectral discontinuities reported in Section 5.4) of the dif-
ferent emissions in Cyg A, confirming a typical power-law
decay behaviour. On a further note, a spectral discontinuity
at the effective channel ν̂17 = 6.039 GHz, demarcating the
two effective frequency ranges [ν̂1, ν̂16] = [4, 039, 5.959] GHz
and [ν̂17, ν̂30] = [6.039, 7.959] GHz is noticed. We recall that
this discontinuity is most likely induced by the calibration
errors affecting the observations associated with these two
frequency ranges.

With regards to Cyg A-2, both Faceted HyperSARA
and SARA succeed in detecting it on some channels, though
with lower flux values than the ones reported in Section 5.4.
In fact, Faceted HyperSARA detects the source within the
frequency range [7.063,7.831] GHz with an average flux value
of 0.1411 (± 0.07709) mJy, whereas SARA detects it within
the frequency range [7.575,7.959] GHz with an average flux
value of 0.6485 (± 0.6064) mJy. JC-CLEAN fails to detect
the source, due to significant calibration errors.

6.6.2 Computing cost

The computing cost required by the different methods with
hardware resource allocation described in Section 6.4 is re-
ported in Table 6. Faceted HyperSARA requires approx-
imately 4402 CPU hours to reconstruct the whole image
cube, while SARA requires 3600 CPU hours and JC-CLEAN
requires 1296 CPU hours. In agreement with Section 5, note
that the MATLAB implementation of SARA and Faceted
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Figure 10. (Compressed images inserted due to size constraints. These exhibit very light compression artifacts such as
loss of color contrast and blocking artifacts visible on full zoom. See researchportal.hw.ac.uk ID 25219759 for the full

article with uncompressed images.) Cyg A imaged in the context of DR at the spectral resolution 128 MHz. Reconstruction results
of channel ν̂1 = 4.039 GHz. Estimated images at the angular resolution 0.06′′ (3.48 times the associated sensed spatial bandwidth). From

top to bottom: the respective estimated model images of Faceted HyperSARA (Q = 15, C = 1) and SARA, both in units of Jy/pixel,

and restored image of JC-CLEAN in units of Jy/beam. The associated synthesized beam is of size 0.36′′ × 0.35′′ and its flux is 40.7 Jy.
The full FoV images (log10 scale) are overlaid with the residual images (bottom right, linear scale) and zooms on selected regions in

Cyg A (top left, log10 scale). These correspond to the west hotspot (left) and the inner core of Cyg A (right). The zoomed regions are

displayed with different value ranges for contrast visualization purposes and highlighted with white boxes in the full images. Cyg A-2
location is highlighted with a white dashed circle. Negative pixel values of JC-CLEAN restored image and associated zooms are set to 0

for visualization purposes. Full image cubes are available online (Thouvenin et al. 2020).

https://researchportal.hw.ac.uk/en/publications/parallel-faceted-imaging-in-radio-interferometry-via-proximal-spl
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Figure 11. (Compressed images inserted due to size constraints. These exhibit very light compression artifacts such as
loss of color contrast and blocking artifacts visible on full zoom. See researchportal.hw.ac.uk ID 25219759 for the full

article with uncompressed images.) Cyg A imaged in the context of DR at the spectral resolution 128 MHz. Reconstruction results
of channel ν̂30 = 7.959 GHz. Estimated images at the angular resolution 0.06′′ (1.76 times the observations spatial bandwidth). From

top to bottom: the respective estimated model images of Faceted HyperSARA (Q = 15, C = 1) and SARA, both in units of Jy/pixel,

and restored image of JC-CLEAN in units of Jy/beam. The associated synthesized beam is of size 0.16′′ × 0.15′′ and its flux is 7.97 Jy.
The full FoV images (log10 scale) are overlaid with the residual images (bottom right, linear scale) and zooms on selected regions in

Cyg A (top left, log10 scale). These correspond to the west hotspot (left) and the inner core of Cyg A (right). The zoomed regions are

displayed with different value ranges for contrast visualization purposes and highlighted with white boxes in the full images. Cyg A-2
location is highlighted with a white dashed circle. Negative pixel values of JC-CLEAN restored image and associated zooms are set to 0

for visualization purposes. Full image cubes are available online (Thouvenin et al. 2020).

https://researchportal.hw.ac.uk/en/publications/parallel-faceted-imaging-in-radio-interferometry-via-proximal-spl
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Figure 12. (Compressed images inserted due to size constraints. These exhibit very light compression artifacts such as
loss of color contrast and blocking artifacts visible on full zoom. See researchportal.hw.ac.uk ID 25219759 for the full

article with uncompressed images.) Cyg A imaged in the context of DR at the spectral resolution 128 MHz. Average estimated
images, computed as the mean along the spectral dimension. From top to bottom: the respective estimated average model images of

Faceted HyperSARA (Q = 15, C = 1) and SARA, and average restored image of JC-CLEAN (obtained as the mean of the restored

images normalised by the flux of their associated synthesized beam).The full FoV images (log10 scale) are overlaid with the residual
images (bottom right, linear scale) and zooms on selected regions in Cyg A (top left, log10 scale). These correspond to the west hotspot

(left) and the inner core of Cyg A (right). The zoomed regions are displayed with different value ranges for contrast visualization purposes

and highlighted with white boxes in the full images. Cyg A-2 location is highlighted with a white dashed circle. Negative pixel values of
JC-CLEAN restored image and associated zooms are set to 0 for visualization purposes.

https://researchportal.hw.ac.uk/en/publications/parallel-faceted-imaging-in-radio-interferometry-via-proximal-spl
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HyperSARA does not require significantly more CPU time
than the optimized C++ implementation of JC-CLEAN.

More interestingly, in comparison with the computing
cost of the experiments conducted in Section 5 and reported
in Table 5, joint image and data DR allows a significant
reduction in the computing cost, that is about 8-fold and
20-fold reduction for Faceted HyperSARA and SARA, re-
spectively. We re-emphasize that the reported numbers are
sensitive to the number of CPU cores allocated for each
method.

7 CONCLUSION AND FUTURE WORK

We have introduced the Faceted HyperSARA method, which
leverages a spatio-spectral facet prior model for wide-band
radio-interferometric imaging. The underlying regulariza-
tion encodes a sophisticated facet-specific prior model to
ensure precision of the image reconstruction, allowing the
bottleneck induced by the size of the image cube to be effi-
ciently addressed via parallelization. Experiments conducted
on synthetic data confirm that the proposed approach can
provide a major increase in scalability in comparison with
the original HyperSARA algorithm (Abdulaziz et al. 2019b),
at no cost in imaging quality and showing potential to im-
prove the reconstruction of faint emissions.

Leveraging the power of a large scale High Per-
formance Computing system, our MATLAB implementa-
tion (available on GitHub https://basp-group.github.

io/Puri-Psi/) has been further validated on the reconstruc-
tion of a 15 GB image cube of Cyg A from 7.4 GB of VLA
data. The associated results are a practical proof of con-
cept of the scalability of Faceted HyperSARA, which is also
shown to provide a significant improvement in the imaging
quality with respect to JC-CLEAN. Since a comparison with
HyperSARA would have been impractical, we show that
Faceted HyperSARA also supersedes the early monochro-
matic SARA approach in imaging precision. Interestingly,
our results confirm the recent discovery of a super-massive
second black hole in the inner core of Cyg A at lower fre-
quencies than both JC-CLEAN and SARA (the black hole is
detected and resolved at C band, starting from 5.979 GHz).

We have finally revisited the image formation process of
Cyg A and proposed to reduce the dimension of the inverse
imaging problem, both in terms of image and data dimen-
sions, prior to applying Faceted HyperSARA. The combined
approach was shown to be very effective in preserving the
imaging quality obtained in the absence of dimensionality
reduction, while offering significant reductions in both mem-
ory requirements and computing cost, ultimately translating
into an enhanced scalability.

Having addressed the computational bottlenecks raised
by both the volume of the data and the size of the image, fu-
ture work should contemplate the definition and implemen-
tation of a faceted Fourier transform to improve the data
and image locality in the proposed algorithm. Another per-
spective consists in developing a production C++ version of
Faceted HyperSARA, building from the existing C++ ver-
sion of HyperSARA (see the Puri-Psi webpage), with the
aim of achieving maximum performance and scalability of
a software implementation. Ultimately, beyond image esti-
mation, the faceted approach should also be integrated into

the recently proposed methods for uncertainty quantifica-
tion by convex optimization (e.g. Repetti et al. 2018, 2019;
Abdulaziz et al. 2019a).

Last but not least, our work further illustrates the po-
tential of advanced algorithms to enhance imaging quality
beyond instrument resolution, opening the door to cost sav-
ing considerations for forthcoming arrays.
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