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Cosmology model

 Universe content: “Dark” Universe

Visible matter represent only about 5% of the Universe

 Weak lensing

The most promising tool to understand the nature of dark matter
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Weak lensing

 The shear map 𝜸(𝜸𝟏, 𝜸𝟐)

𝜸𝟏 = deformation in horizontal direction

𝜸𝟐 = deformation in diagonal direction
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Figure: (a)The simulated convergence map 𝜅, (b)The shear map 𝛾 is superimposed to the convergence map 𝜅.

(a) (b)
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Dark matter map reconstruction
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Inverse problem
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 E and B modes decomposition .

We use a field u (Deriaz, Pires, Starck; A&A; 2012) such that

BEu  














2,11,2

2,21,1




uwith

Because the weak lensing arises from a scalar potential, it can be shown that weak 

lensing only produces E modes to the first order.
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Solutions

 Fourier Transform: remove the partial differential, boundary effects

 New solution:

𝚫𝜿𝑩 = −𝝏𝟏
𝟐 + 𝝏𝟐

𝟐 𝜸𝟏 + 𝟐𝝏𝟏𝝏𝟐𝜸𝟐

𝚫𝜿𝑬 = 𝝏𝟏
𝟐 − 𝝏𝟐

𝟐 𝜸𝟏 + 𝟐𝝏𝟏𝝏𝟐𝜸𝟐

1. Reconstruct B modes according to the Poisson equation (1) and the boundary 

condition 𝜅𝐵 = 0

2. Obtain the Dirichlet boundary condition for E modes by the line integration 

𝜅𝐸 =  

Γ

𝒖 − 𝛁 × 𝜿𝑩 ⋅ 𝑑𝒔

3. Reconstruct E modes according to the Poisson equation (2) and the boundary 

condition obtained in the previous step.

 Techniques: Multigrid (MG), Finite Difference method (FDM).
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(1)

(2)
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Discretization

 As for a Poisson equation 𝚫𝐟 = 𝐠
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Jacobi

Gauss-Seidel

SOR

 Elementary iterative methods:
Rate of convergence: 

Very long!!!
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Why use the MG?
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Blue point: previous position

Red point: current position

 Multigrid method:

Global processing, to eliminate large-scale error on the coarser grid

 Why Elementary iterative methods are not efficient?

Local processing, but not global processing.

𝑨 𝒇𝒂𝒑𝒑 + 𝒆 = 𝒈 𝑨𝒆 = 𝒈 − 𝑨𝒇𝒂𝒑𝒑 = 𝒓
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Interpolation
Restriction

MG V-Cycle

14/11/201410

 How do we “solve” the coarse- grid residual equation? Recursion

• V-Cycle

• Algorithm

𝑹 = 𝑹𝒉
𝟐𝒉 = restriction matrix

𝑰 = 𝑰𝟐𝒉
𝒉 = interpolation matrix
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Numerical results
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Analysis of convergence
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Finest grid

(N×N)

V-Cycles for 

B modes

V-Cycles for

E modes
Relative error

32 × 32 5 5 6.2%

64 × 64 5 7 4.1%

128 × 128 5 7 4.0%

256 × 256 6 7 4.5%

512 × 512 6 9 4.6%

1024 × 1024 7 8 4.7%

Table : V-Cycles of MG (Stopping criteria: 10-4 between iterations)

If error tolerance 𝜖 = 𝐶ℎ2 → V-Cycle times: 𝒪(log 𝑁) → global complexity: 𝒪(𝑁2log 𝑁)
Further, 𝜖 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 → V-Cycle times: 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 → global complexity: 𝒪(𝑁2)

 Complexity

Very efficient !
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Irregular domain
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Figure : Plot of the COSMOS survey, each point represents a galaxy

 Why should apply to the irregular domain? 

In practice some areas of the survey of the telescope are masked because of foreground stars, this 

leads to a requirement of a proper handling of a complex geometry of the survey and of missing 

data.
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Modeling
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 Examples

mask1

mask2

Ω

Ω

D

D
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FDM for the complex geometry

 FDM

A numerical method for approximating the solutions to differential equations using 
finite difference equations to approximate derivatives

14/11/201415

 Computation models
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Numerical results (irregular domain)
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Irregular domain with “holes”
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mask

× ×

 Offset problem of the line integral 𝜅𝐸 =  Γ 𝒖 − 𝛁 × 𝜿𝑩 ⋅ 𝑑𝒔

 The value of the departure point is given arbitrarily. Thus, it is likely to have an offset 

between the reconstructed dark matter map and the theoretic one.

 If we compute independently the line integral for each boundary, the offset will be different 

from one another

offset1     ≠   offset2  ≠  offset3

 Example

How to solve it?
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Preconstruction – Correction scheme
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1. Similarly, reconstruct 𝜅𝐵with the boundary condition 𝜅𝐵 = 0

2. Preconstruction. Reconstruct firstly κE with "holes" filled:

a) Fill each “hole” with average of the edge of the hole

b) Then, reconstruct 𝜅𝐸 with the outer Dirichlet boundary condition

3. Correction. Reconstruct the final 𝜅𝐸:

a) Based on 𝜅𝐸 obtained in the step (2), we choose other integral paths to compute the 

Dirichlet boundary condition for each “hole”

b) Reconstruct 𝜅𝐸 with all the boundary conditions.

 Proposal:
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Numerical simulation
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Reconstruction  𝜅𝐸 Original 𝜅
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Dark matter map denoising
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Noise robustness of the MG

 Real data:

 𝛾𝑛 = 𝛾 + 𝑁𝑏, where 𝑁𝑏 ∼ 𝑁
𝜎𝜖
𝛾

𝑁𝑔
, in practice, 𝑁𝑔 ≈ 30 arcmin−2, 𝜎𝜀

𝛾
≈ 0.3

 Noise robustness (MG vs FFT)

14/11/201421

Figure: The relative error of 𝜅𝐸 versus (a) standard deviation, (b) SNR in dB

(a) (b) 
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Filtering

 However, using the MG, the noise of 𝜿𝑬 is no longer simple 

Gaussian ⟶ Preprocessing of 𝜸

14/11/201422

 Filtering

• Linear filters

• Non-linear filters

Figure: Error map between  𝜅𝐸 and 𝜅 with 𝜎𝜖
𝛾
= 0.3 : (a) using the MG, (b) using the FFT.

(a) (b)
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Filtering

 Linear filters

• Gaussian filter

─ Low pass filter, suppress the high frequencies of the signal

𝛾𝐺 = 𝐺𝜎 ∗ 𝛾𝑛 = 𝐺𝜎 ∗ 𝛾1𝑛 + 𝐺𝜎 ∗ 𝛾2𝑛,

where 𝐺𝜎 is a Gaussian function

𝐺𝜎(𝑥, 𝑦) =
1

2𝜋𝜎2 𝑒
−

𝑥−𝑥0
2+ 𝑦−𝑦0

2

2𝜎2

It depends strongly on the value of the width 𝜎

• Wiener filter

─ Optimal filter in terms of mean square error for periodic data

𝑊 𝑘1, 𝑘2 =
 𝛾 𝑘1, 𝑘2

2

 𝛾 𝑘1, 𝑘2
2 +  𝑁𝑏 𝑘1, 𝑘2

2

14/11/201423
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Filtering

 Non-linear filters

• Anisotropic filter

─ Perona-Malik filter, nonlinear diffusion for avoiding the 
blurring and localization problems of linear diffusion filtering.

𝜕𝑡𝛾 = 𝑑𝑖𝑣 𝑔 𝛻𝛾 2 𝛻𝛾 ,
with diffusion function such as 

g s2 =
1

1 + 𝑠2/𝜆2
with 𝜆 > 0

• Wavelet filter

─ Wavelet transform 𝑤 = WT(γn)

─ Filtering: threshold t

 𝑤 = HardThresh 𝑤 =  
𝑤 if 𝑤 ≥ 𝑡,
0 otherwise.

14/11/201424
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Numerical results

14/11/201425

MG

FFT

SS

Gaussian filter Wiener filter Wavelet filter Anisotropic filter

Theoretic 𝜅

Noise level: 𝝈𝝐
𝜸
= 𝟎. 𝟑
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Numerical results
 Visual perception

• The performance of the wavelet filter depends on the choice 

of the representation dictionary

• Anisotropic filter is very close to Gaussian filter as the map 

is not textured

• Although 𝜅 is not Gaussian, Wiener filter gives a reasonable 

result with a better resolution than Gaussian filter

 Quantitatively

• Relative error 
 𝜅𝐸−𝜅 2

𝜅
2

14/11/201426

Filters MG FFT Seitz-Schneider

Gaussian filter 41.5% 46.6% 44.3%

Wiener filter 39.3% 40.5% 44.7%

Wavelet filter 64.6% 61.4% 53.5%

Anisotropic filter 44.9% 47.9% 47.4%
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Conclusions

• The MG doesn’t lead to boundary effects compared to the FFT

• The MG is very efficient in solving large-size problem

• The MG integrated by the FDM can be extended to irregular 
domain,  even with absent data inside, valuable in practice to the 
real telescope survey.

• As for the denoising problem, the preprocessing is considered, 
and the numerical results prove that Wiener filter gives a better 
resolution.

 Perspectives

• In short term, application to the COSMOS survey

• In long term, denoising problem may be reconsidered using 
sparse signal processing.

14/11/201427
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Existing method

 Fourier Transform:

• To remove the partial differential, we transform into Fourier 
space

•  𝛾𝑖 =  𝑃𝑖  𝑘𝑖 , 𝑖 = 1,2 with 

 𝑃1 𝑘 =
𝑘1
2−𝑘2

2

𝑘1
2+𝑘2

2

 𝑃2 𝑘 =
2𝑘1𝑘2

𝑘1
2+𝑘2

2

•   𝜅𝑛
𝐸 =  𝑃1  𝛾1𝑛 +  𝑃2  𝛾2𝑛

14/11/201430
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Multigrid Method (1)

 Pseudo-code

14/11/201431
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Multigrid Method (2)

 Restriction

• 𝑅ℎ
2ℎ = 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥

• 𝑅ℎ
2ℎ =

1/16 1/8 1/16
1/8 1/4 1/8
1/16 1/8 1/16

 Interpolation

• 𝐼2ℎ
ℎ = 𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥

• 𝐼2ℎ
ℎ =

1/4 1/2 1/4
1/2 1 1/2
1/4 1/2 1/4

14/11/201432
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Multigrid Method (3)

 Restriction model for oblong domain

14/11/201433

 Numerical result for oblong domain

Figure: (a) Reconstructed dark matter map  𝜅𝐸 using the MG with 39 × 55pixels, 

(b) Error map related to the simulated dark matter map.

(a) (b)
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Multigrid Method (4)

 Restriction model for irregular domain
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Line integral

 Model
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Anisotropic filter

 Study of the parameters 𝝀 and 𝑵
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• The edges are better conserved when 𝜆 decreases

• The image is smoother when the smoothing time 

increases
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Gaussian filter

 Study of Gaussian width 𝝈
• the relative error firstly drops rapidly and then rises very 

slowly. We can easily find out the optimal Gaussian width 
𝜎 = 2 ∼ 3 for the filter.
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