

Reconstruction and denoising of dark matter map based on Multigrid Method from weak lensing data

14/11/2014 Ming JIANG (Cosmostat/Irfu)

Tutors: Jean-Luc Starck (AIM, CEA Saclay) Erwan Deriaz (Université de Lorraine)

Context

Dark matter map reconstruction

Dark matter map denoising

Conclusions

Cosmology model

Universe content: "Dark" Universe

Visible matter represent only about 5% of the Universe

• Weak lensing

The most promising tool to understand the nature of dark matter

The shear map γ(γ₁, γ₂)
 γ₁ = deformation in horizontal direction
 γ₂ = deformation in diagonal direction

Figure: (a)The simulated convergence map κ , (b)The shear map γ is superimposed to the convergence map κ .

(a)

 γ_1

 γ_2

Dark matter map reconstruction

Inverse problem

E and B modes decomposition .

We use a field u (Deriaz, Pires, Starck; A&A; 2012) such that

$$u = \nabla \kappa_E + \nabla \times \kappa_B \quad \text{with} \quad u = \begin{bmatrix} -\gamma_{1,1} - \gamma_{2,2} \\ -\gamma_{2,1} + \gamma_{1,2} \end{bmatrix}$$

Because the weak lensing arises from a scalar potential, it can be shown that weak lensing only produces E modes to the first order.

14/11/2014

Solutions

- Fourier Transform: remove the partial differential, boundary effects
- New solution:

$$\Delta \kappa_B = \left(-\partial_1^2 + \partial_2^2\right)\gamma_1 + 2\partial_1\partial_2\gamma_2 \qquad (1)$$
$$\Delta \kappa_E = \left(\partial_1^2 - \partial_2^2\right)\gamma_1 + 2\partial_1\partial_2\gamma_2 \qquad (2)$$

- 1. Reconstruct B modes according to the Poisson equation (1) and the boundary condition $\kappa_B = 0$
- 2. Obtain the Dirichlet boundary condition for E modes by the line integration

$$\kappa_E = \oint_{\Gamma} \left(\boldsymbol{u} - \boldsymbol{\nabla} \times \boldsymbol{\kappa}_{\boldsymbol{B}} \right) \cdot d\boldsymbol{s}$$

- 3. Reconstruct E modes according to the Poisson equation (2) and the boundary condition obtained in the previous step.
- **Techniques: Multigrid (MG), Finite Difference method (FDM).**

MG V-Cycle

How do we "solve" the coarse- grid residual equation? Recursion

• Algorithm

1. Iterate on $A_h f = g_h$ to reach f_h (say 3 Jacobi or Gauss-Seidel steps).

- 2. Restrict the residual $r_h = g_h A_h f_h$ to the coarse grid by $r_{2h} = R_h^{2h} r_h$.
- **3.** Solve $A_{2h}E_{2h} = r_{2h}$ (or come close to E_{2h} by 3 iterations from E = 0).
- 4. Interpolate E_{2h} back to $E_h = I_{2h}^h E_{2h}$. Add E_h to f_h .
- 5. Iterate 3 more times on $A_h f = g_h$ starting from the improved $f_h + E_h$.

10

Analysis of convergence Complexity

If error tolerance $\epsilon = Ch^2 \rightarrow V$ -Cycle times: $\mathcal{O}(\log N) \rightarrow \text{global complexity: } \mathcal{O}(N^2 \log N)$ Further, $\epsilon = constant \rightarrow V$ -Cycle times: *constant* \rightarrow global complexity: $\mathcal{O}(N^2)$

Very efficient !

-			
Finest grid (N×N)	V-Cycles for B modes	V-Cycles for E modes	Relative error
32×32	5	5	6.2%
64×64	5	7	4.1%
128×128	5	7	4.0%
256×256	6	7	4.5%
512×512	6	9	4.6%
1024×1024	7	8	4.7%

Table : V-Cycles of MG (Stopping criteria: 10⁻⁴ between iterations)

Irregular domain

• Why should apply to the irregular domain?

In practice some areas of the survey of the telescope are masked because of foreground stars, this leads to a requirement of a proper handling of a complex geometry of the survey and of missing data.

Figure : Plot of the COSMOS survey, each point represents a galaxy

Examples

FDM for the complex geometry

FDM

A numerical method for approximating the solutions to differential equations using finite difference equations to approximate derivatives

Computation models

• Mask1 Numerical results (irregular domain) $\frac{\|\widetilde{\kappa}_E - \kappa\|_2}{\|\kappa\|_2} = 11.4\%$

Reconstruction $\tilde{\kappa}_{E}$

Mask2

- The value of the departure point is given arbitrarily. Thus, it is likely to have an offset between the reconstructed dark matter map and the theoretic one.
- If we compute independently the line integral for each boundary, the offset will be different from one another

Preconstruction – Correction scheme

Proposal:

- 1. Similarly, reconstruct κ_B with the boundary condition $\kappa_B = 0$
- 2. **Preconstruction.** Reconstruct firstly κ_E with "holes" filled:
- a) Fill each "hole" with average of the edge of the hole
- b) Then, reconstruct κ_E with the outer Dirichlet boundary condition
- **3.** Correction. Reconstruct the final κ_E :
 - a) Based on κ_E obtained in the step (2), we choose other integral paths to compute the Dirichlet boundary condition for each "hole"
 - b) Reconstruct κ_E with all the boundary conditions.

Numerical simulation

0.32

0.28

0.24

0.20

0.16

0.12

0.08

0.04

0.00

CEA-Irfu

Original κ 0.010 0.005 50 0.000 -0.005 100 -0.010-0.015 150 -0.020 $\frac{\left\|\widetilde{\kappa}_{E}-\kappa\right\|_{2}}{\left\|\kappa\right\|_{2}}=9.5\%$ -0.025 100 150 50 0 **Relative Errors**

Dark matter map denoising

Noise robustness of the MG

Real data:

• $\gamma_n = \gamma + N_b$, where $N_b \sim N\left(\frac{\sigma_{\epsilon}^{\gamma}}{\sqrt{N_g}}\right)$, in practice, $N_g \approx 30 \operatorname{arcmin}^{-2}$, $\sigma_{\epsilon}^{\gamma} \approx 0.3$

Noise robustness (MG vs FFT)

Figure: The relative error of κ_E versus (a) standard deviation, (b) SNR in dB

Filtering

However, using the MG, the noise of κ_E is no longer simple Gaussian \rightarrow Preprocessing of γ

Figure: Error map between $\tilde{\kappa}_E$ and κ with $\sigma_{\epsilon}^{\gamma} = 0.3$: (a) using the MG, (b) using the FFT.

Filtering

- Linear filters
- Non-linear filters

Filtering

Linear filters

• Gaussian filter

- Low pass filter, suppress the high frequencies of the signal

$$\gamma_G = G_\sigma * \gamma_n = G_\sigma * \gamma_{1n} + G_\sigma * \gamma_{2n},$$

where G_{σ} is a Gaussian function

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} e^{-\frac{(x-x_0)^2 + (y-y_0)^2}{2\sigma^2}}$$

It depends strongly on the value of the width σ

- Wiener filter
 - Optimal filter in terms of mean square error for periodic data

$$W(k_1, k_2) = \frac{|\hat{\gamma}(k_1, k_2)|^2}{|\hat{\gamma}(k_1, k_2)|^2 + |\hat{N}_b(k_1, k_2)|^2}$$

Non-linear filters

- Anisotropic filter
 - Perona-Malik filter, nonlinear diffusion for avoiding the blurring and localization problems of linear diffusion filtering.

 $\partial_t \gamma = div(g(|\nabla \gamma|^2)\nabla \gamma),$ with diffusion function such as

$$g(s^2) = \frac{1}{1 + s^2/\lambda^2}$$
 with $\lambda > 0$

- Wavelet filter
 - Wavelet transform $w = WT(\gamma_n)$
 - Filtering: threshold *t*

$$\widetilde{w} = \text{HardThresh}(w) = \begin{cases} w & \text{if } |w| \ge t, \\ 0 & \text{otherwise.} \end{cases}$$

FFT

SS

0.175 0.20 0.20 0.150 0.15 0.125 0.16 0.10 0.100 0.12 0.05 0.075 0.08 0.00 0.050 -0.05 0.025 0.04 -0.10 0.000 0.00 -0.15 -0.025 0.175 0.20 0.20 0.150 0.16 0.16 0.125 0.100 0.17 0.12 0.075 0.05 0.08 0.050 0.04 0.025 100 0.000 0.00 120 -0.025

0.32 0.28 0.24 0.20

0.16

0.12 0.08 0.04

0.00

0.150

0.125

0.100

0.075

0.050

0.025

0.000

0.02

0.175

0.150

0.125

0.100

0.075

0.050

0.025

0.000

-0.025

0.175

0.150

0.125

0.100

0.075

0.050

0.025

0.000

-0.025

Numerical results Visual perception

- The performance of the wavelet filter depends on the choice of the representation dictionary
- Anisotropic filter is very close to Gaussian filter as the map is not textured
- Although κ is not Gaussian, Wiener filter gives a reasonable result with a better resolution than Gaussian filter

Quantitatively

14/11

26

• Relative error $\frac{ \kappa_E - \kappa _2}{ \kappa _2}$				
Filters	MG	FFT	Seitz-Schneider	
Gaussian filter	41.5%	46.6%	44.3%	
Wiener filter	39.3%	40.5%	44.7%	
Wavelet filter	64.6%	61.4%	53.5%	
Anisotropic filter	44.9%	47.9%	47.4%	
CEA Irfy Institute of Personal into the Eurodemontal Leure of the Universe				

 $||\tilde{\mathbf{v}}_{\mathbf{n}}-\mathbf{v}||$

Conclusions

- The MG doesn't lead to boundary effects compared to the FFT
- The MG is very efficient in solving large-size problem
- The MG integrated by the FDM can be extended to irregular domain, even with absent data inside, valuable in practice to the real telescope survey.
- As for the denoising problem, the preprocessing is considered, and the numerical results prove that Wiener filter gives a better resolution.

Perspectives

- In short term, application to the COSMOS survey
- In long term, denoising problem may be reconsidered using sparse signal processing.

Thank you!

28 14/11/2014

Existing method

Fourier Transform:

• To remove the partial differential, we transform into Fourier space

$$\begin{cases} \gamma_1 = \frac{1}{2} (\partial_1^2 - \partial_2^2) \psi \\ \gamma_2 = \partial_1 \partial_2 \psi \\ \kappa = \frac{1}{2} (\partial_1^2 + \partial_2^2) \psi \end{cases}$$

•
$$\hat{\gamma}_i = \hat{P}_i \hat{k}_i$$
, $i = 1,2$ with
$$\begin{cases} \hat{P}_1(k) = \frac{k_1^2 - k_2^2}{k_1^2 + k_2^2} \\ \hat{P}_2(k) = \frac{2k_1k_2}{k_1^2 + k_2^2} \end{cases}$$

•
$$\hat{\kappa}_n^E = \hat{P}_1 \hat{\gamma}_{1n} + \hat{P}_2 \hat{\gamma}_{2n}$$

Multigrid Method (1)

Pseudo-code

Algorithm 1: The MGV scheme algorithm for Poisson's problem Af = gFunction $f^h = MGV(q^h, f^h)$: if $\Omega^h = coarsest qrid$ then $f^{h} = -\frac{1}{4}g^{h}$; /* The factor comes from Laplace operator */ return f^h else $f^h = Relax_{\nu_1}(g^h, f^h);$ $r^{2h} = I_{h}^{2h}(g^{h} - A^{h}f^{h});$ /* Move the residual to Ω^{2h} */ /* Initial guess of f^{2h} */ $f^{2h} = 0$; $f^{2h} = MGV(r^{2h}, f^{2h})$; /* Recursion */ $f^{h} = f^{h} + I^{h}_{2h} f^{2h}$; /* Correction of the solution */ $f^h = Relax_{\nu_0}(g^h, f^h);$ return f^h end end

Multigrid Method (2)

Restriction

• $R_h^{2h} = restriction matrix$

•
$$R_h^{2h} = \begin{bmatrix} 1/16 & 1/8 & 1/16 \\ 1/8 & 1/4 & 1/8 \\ 1/16 & 1/8 & 1/16 \end{bmatrix}$$

Interpolation

• $I_{2h}^h = interpolation matrix$

•
$$I_{2h}^{h} = \begin{bmatrix} 1/4 & 1/2 & 1/4 \\ 1/2 & 1 & 1/2 \\ 1/4 & 1/2 & 1/4 \end{bmatrix}$$

Figure: (a) Reconstructed dark matter map \hat{k}_E using the MG with 39 × 55 pixels, (b) Error map related to the simulated dark matter map.

14/11/2014

Restriction model for irregular domain

Anisotropic filter •

(b) $\lambda = 1, N = 10$

(e) $\lambda = 1, N = 20$

1.013

a in the

1.04

a.046

Study of the parameters λ and N

14/11/2014

The edges are better conserved when λ decreases The image is smoother when the smoothing time increases

 $(f) \lambda = 20, N = 20$

CEA-Irfu

Gaussian filter

Study of Gaussian width σ

• the relative error firstly drops rapidly and then rises very slowly. We can easily find out the optimal Gaussian width $\sigma = 2 \sim 3$ for the filter.

